STABILITY OF POLYNOMIAL CONVEXITY OF TOTALLY REAL SETS

FRANC FORSTNERIČ¹

ABSTRACT. We show that certain compact polynomially convex subsets of \mathbb{C}^n remain polynomially convex under sufficiently small \mathbb{C}^2 perturbations.

1. Statement of the results. Let M be a Stein manifold. Denote by $\mathcal{O}(M)$ the algebra of all holomorphic functions on M with the standard topology of uniform convergence on compact subsets. A compact subset K of M is said to be $\mathcal{O}(M)$ -convex if for every point $x \in M \setminus K$ there is a holomorphic function $f \in \mathcal{O}(M)$ such that

$$|f(x)| > \sup_{y \in K} |f(y)|.$$

Since the holomorphic polynomials are dense in the algebra $\mathcal{O}(\mathbb{C}^n)$ of holomorphic functions on \mathbb{C}^n , an $\mathcal{O}(\mathbb{C}^n)$ -convex subset of \mathbb{C}^n is just a polynomially convex subset.

Given a compact $\mathcal{O}(M)$ -convex subset K of M, an open neighborhood U of K and a \mathbb{C}^k diffeomorphism Ψ of U onto an open subset $\Psi(U)$ in M, we ask whether the set $\Psi(K)$ is also $\mathcal{O}(M)$ -convex provided that Ψ is sufficiently close to the identity on U in the \mathbb{C}^k sense. In other words, is $\mathcal{O}(M)$ -convexity a stable property under smooth perturbations? In general this is not so as the following example shows.

EXAMPLE 1. Let $M = \mathbb{C}^2$ and $K = \{(z, 0) \in \mathbb{C}^2 : |z| \le 1\}$. Clearly K is convex and hence polynomially convex. The diffeomorphisms $\Psi_e : \mathbb{C}^2 \to \mathbb{C}^2$ given by

$$\Psi_{\varepsilon}(z,w) = (z,w+\varepsilon|z|^2), \quad \varepsilon \ge 0,$$

are close to the identity in the C^{∞} sense for small ε , but the set

$$\Psi_{\varepsilon}(K) = \left\{ \left(z, \varepsilon |z|^{2} \right) \colon |z| \leq 1 \right\}$$

is not polynomially convex for any $\varepsilon > 0$ since it contains the boundary of the analytic disk $\Delta_{\delta,\theta} = \{(z, \varepsilon \delta^2 e^{i\theta}): |z| \le \delta\}$ for each $\delta \in [0,1]$ and $\theta \in \mathbb{R}$. These disks fill an open subset of \mathbb{C}^2 that is contained in the polynomial hull of $\Psi_{\varepsilon}(K)$ according to the maximum principle.

©1986 American Mathematical Society 0002-9939/86 \$1.00 + \$.25 per page

Received by the editors February 8, 1985 and, in revised form, April 22, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32E20.

¹Research supported in part by a Sloan Foundation Predoctoral Fellowship.

Recall that a \mathbb{C}^1 submanifold Σ of a complex manifold M is called totally real if for each point $x \in \Sigma$ the tangent space $T_x\Sigma$ contains no nontrivial complex subspace. If K is a compact subset of a totally real submanifold Σ , then by [2, p. 300] there is an open neighborhood U of K in M and a \mathbb{C}^2 strictly plurisubharmonic function $\rho: U \to \mathbb{R}_+$ such that

(1.1)
$$K = \{ x \in U | \rho(x) = 0 \}, \quad \rho \ge 0 \text{ strictly plurisubharmonic on } U.$$

Conversely, every compact subset K of M of the form (1.1) is locally contained in a \mathbb{C}^1 totally real submanifold of M [3]. Therefore we shall say that a compact subset K of M is *totally real* if it is of the form (1.1).

1.1 THEOREM. Let M be a Stein manifold and K a compact totally real subset of M that is $\mathcal{O}(M)$ -convex. Then every sufficiently small \mathbb{C}^2 perturbation of K in M is also $\mathcal{O}(M)$ -convex.

We need to specify what we mean by a small \mathbb{C}^2 perturbation of K. We embed the Stein manifold M in a Euclidean space \mathbb{C}^n [4, p. 125]. Let U be an open neighborhood of K in \mathbb{C}^n , and denote by E the Banach space $\mathbb{C}^2(U)^n$ of all *n*-tuples of complex valued functions $\Psi = (\Psi_1, \dots, \Psi_n)$ of class \mathbb{C}^2 on U which have finite norm

(1.2)
$$\|\Psi\|_{E} = \sum_{j=1}^{n} \sup\left\{ \left| D^{\alpha} \Psi_{j}(z) \right| \colon z \in U, \, |\alpha| \leq 2 \right\}.$$

Theorem 1.1 asserts that the set $\Psi(K)$ is $\mathcal{O}(M)$ -convex for each Ψ in an open neighborhood of the identity map in E such that $\Psi(K) \subset M$.

1.2 COROLLARY. Let M be a Stein manifold, let N be a manifold of class \mathbb{C}^2 and let B be an open neighborhood of 0 in some \mathbb{R}^m . Suppose that $F: N \times B \to M$ is a \mathbb{C}^2 map such that $F_0 = F(\cdot, 0)$ is a totally real embedding of N in M. If K is a compact subset of N such that $F_0(K)$ is $\mathcal{O}(M)$ -convex, then $F_t(K)$ is $\mathcal{O}(M)$ -convex for all t in a neighborhood of 0 in \mathbb{R}^m . (Here, $F_t = F(\cdot, t)$.)

EXAMPLE 2. If Σ is a totally real affine subspace of \mathbb{C}^n , then every compact subset K of Σ is polynomially convex. This follows from the Stone-Weierstrass approximation theorem and from the fact that the general linear group $GL(n, \mathbb{C})$ acts transitively on the set of totally real subspaces of \mathbb{C}^n of dimension k for each $1 \leq k \leq n$. Hence, by Theorem 1.1, every small \mathbb{C}^2 perturbation of a compact subset $K \subset \Sigma$ is polynomially convex.

We shall consider the same question in the case when K is a subset with nonempty interior in a Stein manifold. Suppose that D is an open relatively compact subset of M whose topological boundary $\overline{D} \setminus D$ contains a strictly pseudoconvex hypersurface Γ such that D lies on the convex side of Γ . More precisely, we assume that there is an open subset V of M and a strictly plurisubharmonic function ρ : $V \to \mathbb{R}$ of class \mathbb{C}^2 such that

(i) $D \cap V = \{x \in V | \rho(x) < 0\},\$

(ii) $\Gamma \cap V = \{x \in V | \rho(x) = 0\} \subset \subset \Gamma$, and

(iii) $d\rho \neq 0$ on the set $\Gamma \cap V$.

We define the support of a diffeomorphism $\Psi: M \to M$ to be the closure of the set $\{x \in M | \Psi(x) \neq x\}$ where Ψ differs from the identity map.

1.3 THEOREM. Let D be an open relatively compact subset of a Stein manifold M that satisfies the properties (i), (ii) and (iii) above. If the set $K = \overline{D}$ is $\mathcal{O}(M)$ -convex, then for every sufficiently small \mathbb{C}^2 perturbation $\Psi: M \to M$ supported in V the set $\Psi(K)$ is also $\mathcal{O}(M)$ -convex.

1.4 COROLLARY. If D is a relatively compact strictly pseudoconvex domain in a Stein manifold M such that \overline{D} is $\mathcal{O}(M)$ -convex, then every sufficiently small \mathbb{C}^2 -perturbation of \overline{D} in M is also $\mathcal{O}(M)$ -convex.

In §2 we prove Theorem 1.1 and Corollary 1.2; in §3 we prove Theorem 1.3 and Corollary 1.4.

I wish to thank Professor Edgar Lee Stout for several helpful conversations.

2. Polynomial convexity of totally real sets.

PROOF OF THEOREM 1.1. If we embed the Stein manifold M in a complex Euclidean space \mathbb{C}^n [4], then a compact subset K of $M \subset \mathbb{C}^n$ is $\mathcal{O}(M)$ -convex if and only if it is polynomially convex. Therefore it suffices to prove the theorem in the case when $M = \mathbb{C}^n$. Let U be an open subset of \mathbb{C}^n , ρ a nonnegative strictly plurisubharmonic function on U, and let $K = \{z \in U | \rho(z) = 0\}$ be a compact polynomially convex subset of \mathbb{C}^n . Choose a smooth function χ on \mathbb{C}^n , $0 \leq \chi \leq 1$, such that $\chi = 1$ on a neighborhood of K and $\chi = 0$ outside a compact subset of U. Let $E = \mathbb{C}^2(U)^n$ be the Banach space with the norm (1.2). Given a $\psi \in E$ we consider the map $\Psi: \mathbb{C}^n \to \mathbb{C}^n$ given by

(2.1)
$$\Psi(z) = z + \chi(z)\psi(z).$$

Clearly Ψ is proper. If the *E*-norm of ψ is sufficiently small, then Ψ is also regular and hence a covering projection. Since Ψ is one-to-one outside a compact subset of \mathbb{C}^n , it has only one sheet and therefore it is a diffeomorphism of \mathbb{C}^n onto \mathbb{C}^n . Every small perturbation of *K* can be achieved within *U* with a map of the form (2.1).

Choose a neighborhood V of K, \overline{V} contained in U, such that $\chi = 1$ on a neighborhood of \overline{V} . There exists a \mathbb{C}^{∞} strictly plurisubharmonic exhaustion function ϕ on \mathbb{C}^n such that $\phi < 0$ on the set K but $\phi > 0$ on $\mathbb{C}^n \setminus V$ [4, p. 110]. Choose a \mathbb{C}^{∞} function $h: \mathbb{R} \to [0, \infty)$ that is equal to 0 on $(-\infty, 0]$ and is strictly convex on $(0, \infty)$. Then the function

$$\rho' = \chi \circ \rho + ch \circ \phi \colon \mathbb{C}^n \to [0, \infty)$$

is a strictly plurisubharmonic exhaustion function of class \mathbb{C}^2 on \mathbb{C}^n provided that the constant c > 0 is chosen sufficiently big, and $K = \{ z \in \mathbb{C}^n | \rho'(z) = 0 \}$.

If $\psi \in E$ is small, the function $\tau = \rho' \circ \Psi^{-1}$ is a small \mathbb{C}^2 perturbation of ρ' , and $\tau = \rho'$ outside a large compact subset *B* of \mathbb{C}^n . Hence the Levi form $L_{\tau} = \sum (\partial^2 \rho / \partial z_j \partial \bar{z}_k) dz_j \otimes d\bar{z}_k$ of ρ is a small perturbation of the Levi form $L_{\rho'}$ of ρ' , and they agree outside *B*. Since the eigenvalues of $L_{\rho'}$ are positive on the compact set *B*, the same is true for L_{τ} . This says that τ is a nonnegative strictly plurisubharmonic exhaustion function on \mathbb{C}^n . The approximation theorem [4, p. 119, Theorem 5.2.8] implies that the zero set of τ is polynomially convex. Since $\Psi(K) = \{z \in \mathbb{C}^n | \tau(z) = 0\}$, Theorem 1.1 is proved.

PROOF OF COROLLARY 1.2. We may take $M = \mathbb{C}^n$ as before. Choose an open relatively compact neighborhood V of K in N. For each $t \in \mathbb{R}^m$ close to 0 the set $V_t = F_t(V)$ is a totally real submanifold of \mathbb{C}^n , and the map $\Phi_t: V_0 \to V_t$, $\Phi_t = F_t \circ F_0^{-1}$, is close to the identity map on V_0 in the \mathbb{C}^2 -sense. Since $\Phi_t(F_0(K)) = F_t(K)$, it suffices to show that there is an open neighborhood U of $F_0(K)$ such that for each t the map Φ_t can be extended to a map Ψ^t on U that is close to the identity in the \mathbb{C}^2 -sense on U.

The map $\phi_t(z) = \Phi_t(z) - z$, $z \in V_0$, is small in the C²-sense. Using a smooth partition of unity we extend ϕ_t to a C² map ψ_t on U such that

$$\|\psi_t\|_{\mathbf{C}^2(U)} \leq c \|\phi_t\|_{\mathbf{C}^2(V_0)},$$

where the constant c is independent of t. The map $\Psi_t(z) = z + \psi_t$, $z \in U$, is the desired extension of Φ_t . Corollary 1.2 now follows from Theorem 1.1.

3. Perturbations on strictly pseudoconvex boundary points. We shall first consider the perturbations of D that are supported in small subsets of V. Fix a point $x_0 \in \Gamma \cap V$, an open neighborhood V_0 of x_0 such that $\overline{V}_0 \subset V$, and a strictly plurisubharmonic defining function ρ for $D \cap V_0$. According to [1, p. 530, Proposition 1] there exist a bounded strictly convex open set $C \subset \mathbb{C}^n$ $(n = \dim M)$ with \mathbb{C}^2 boundary, a holomorphic map $\Phi: M \to \mathbb{C}^n$ and an open set $U \subset M$, $x_0 \in U \subset \subset V_0$, such that the following hold:

- (i) $\Phi(D) \subset C$,
- (ii) $\Phi(\{z \in U | \rho(z) > 0\}) \subset \mathbb{C}^n \setminus \overline{C},$
- (iii) $\Phi^{-1}(\Phi(U)) = U$, and
- (iv) the restriction $\Phi|_U$ is regular and one-to-one.

Let W be a neighborhood of x_0 such that $\overline{W} \subset U$. If Ψ is a small \mathbb{C}^2 perturbation of D supported in W, then $\tilde{\Psi} = \Phi \circ \Psi \circ \Phi^{-1}|_{\Phi(U)}$ is a small \mathbb{C}^2 perturbation of Csupported in $\Phi(U)$. We choose Ψ so close to the identity map that the set $\tilde{\Psi}(D)$ is still convex. For every point $x \in U \setminus \overline{\Psi(D)}$ we have $\Phi(x) \in \mathbb{C}^n \setminus \overline{\Psi(C)}$ and hence there is a holomorphic function h on \mathbb{C}^n such that $h(\Phi(x)) = 1$, but $|h| < \frac{1}{2}$ on $\tilde{\Psi}(C)$. Because of (i) and (iii) above it follows that the point x does not lie in the $\mathcal{O}(M)$ -hull of $\overline{\Psi(D)}$.

To simplify the notation we write $K = \overline{D}$ and $K' = \overline{\Psi(D)}$. The conclusion we just made is that

$$\hat{K}' \cap U = K' \cap U,$$

where \hat{K}' is the $\mathcal{O}(M)$ -convex hull of K'. Since the support of Ψ is contained in W, we have $K' \setminus W = K \setminus W$, and hence (3.1) implies

(3.2)
$$\hat{K}' \cap (U \setminus W) = K \cap (U \setminus W).$$

We shall prove that $\hat{K}' = K'$. Assume that $\hat{K}' \neq K'$ in order to reach a contradiction. Because of (3.1) the two sets can differ only outside U. Since $K \setminus U = K' \setminus U$, the set $\hat{K}' \setminus U$ is strictly larger than $K \setminus U$. The polynomially convex set K has a basis of open neighborhoods Ω that are smothly bounded strictly pseudoconvex domains with $\mathcal{O}(M)$ -convex closure $\overline{\Omega}$. Thus we may choose Ω with these properties that does not contain the set $\hat{K}' \setminus U$. By an embedding theorem for strictly pseudoconvex domains due to Fornaess [1, p. 543] and Khenkin [5, p. 668] there exists a holomorphic embedding $F: M \to \mathbb{C}^N$ for some $N \in \mathbb{Z}_+$ and a bounded strictly convex domain $B \subset \mathbb{C}^N$ such that $F(\Omega) \subset B$ and $F(M \setminus \overline{\Omega}) \subset \mathbb{C}^N \setminus \overline{B}$. We may assume that $0 \in B$. Let

(3.3)
$$t_0 = \inf\left\{t \in \mathbb{R}_+ | F(\hat{K}' \setminus U) \subset t\overline{B}\right\}$$

and replace B by $t_0 B$. Then

$$(3.4) F(\hat{K}' \setminus U) \subset \overline{B},$$

and there is a point $p \in F(\hat{K}' \setminus U) \cap bB$. The set $A = \mathbb{C}^N \setminus \overline{F(W)}$ is open and contains the point p. Moreover, it follows from (3.3) and (3.4) that $F(\hat{K}') \cap A \subset \overline{B}$. This means that locally near p the polynomially convex set $F(\hat{K}') = F(K')$ lies on the convex side of the smooth strictly convex hypersurface bB. According to [1, p. 530] there exists a holomorphic function g defined on a neighborhood of $F(\hat{K}')$ in \mathbb{C}^N such that

$$g(p) = 1$$
 and $|g(q)| < 1$ for $q \in F(\hat{K}') \setminus \{p\}$.

If $\varepsilon > 0$ is sufficiently small, the set

$$F(\hat{K}') \cap \{ |g| \leq 1 - \epsilon \} \subsetneq F(\hat{K}')$$

is polynomially convex and contains F(K'). This is a contradiction since $F(\hat{K}') = F(K')$ is the polynomially convex hull of F(K'). This concludes the proof in the case when the support of the perturbation Ψ is sufficiently small.

It remains to consider the general case. Let Γ' be an open relatively compact subset of $\Gamma \cap V$. Using the methods introduced by Fornaess in [1] we can show that there exist an open set $U \subset \subset V$ such that $U \cap \Gamma = \Gamma'$, a holomorphic map F: $M \to \mathbb{C}^N$ and a bounded strictly convex domain $C \subset \mathbb{C}^N$ with \mathbb{C}^2 boundary such that the properties (i)-(iv) above hold. Moreover, the map F is transversal to bC at every point $x \in \Gamma'$. It follows that every small perturbation of D supported in U can be effected by a small perturbation of C supported in a neighborhood of $F(\Gamma')$. The proof can be completed in the same way as above. We omit the details.

FRANC FORSTNERIČ

References

1. J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569.

2. F. R. Harvey and R. O. Wells, Holomorphic approximation and hyperfunction theory on a \mathbb{C}^1 totally real submanifold of a complex manifold, Math. Ann. 197 (1972), 287–318.

3. ____, Zero sets of non-negative strictly plurisubharmonic functions, Math. Ann. 201 (1973), 165–170.

4. L. Hörmander, An introduction to complex analysis in several variables, North-Holland, Amsterdam and London, 1973.

5. G. M. Khenkin and E. M. Čirka, Boundary properties of holomorphic functions of several complex variables, Sovremeni Problemi Mat. 4, Moskva 1975, pp. 13-142; English transl., Soviet Math. J. 5 (1976), no. 5, 612-687. (Russian)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195

Current address: Univerza E. K. V Ljubljani, FNT-Matematika, Jadranska 19, 61 000 Ljubljana, Yugoslavia