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STABILITY OF POLYNOMIAL CONVEXITY

OF TOTALLY REAL SETS

FRANC FORSTNERlC1

Abstract. We show that certain compact polynomially convex subsets of C"

remain polynomially convex under sufficiently small C2 perturbations.

1. Statement of the results. Let M be a Stein manifold. Denote by 6(M) the

algebra of all holomorphic functions on M with the standard topology of uniform

convergence on compact subsets. A compact subset K of M is said to be &(M)-con-

vex if for every point x G M\K there is a holomorphic function /g &(M) such

that

|/(*)|> sup|/(j)|.
yeA"

Since the holomorphic polynomials are dense in the algebra &(C") of holomorphic

functions on C", an 0(C)-convex subset of C" is just a polynomially convex

subset.

Given a compact 0(M)-convex subset K of M, an open neighborhood U of K

and aC' diffeomorphism ^ of U onto an open subset ^(U) in M, we ask whether

the set ty(K) is also 6(M)-convex provided that ^ is sufficiently close to the

identity on U in the C* sense. In other words, is 0(M)-convexity a stable property

under smooth perturbations? In general this is not so as the following example

shows.

Example 1. Let M = C2 and K = {(z,0) g C2: |z| < 1}. Clearly K is convex

and hence polynomially convex. The diffeomorphisms ¥,: C2 -» C2 given by

%(z\w) - (z,w + e\z\ ),       e > 0,

are close to the identity in the C°° sense for small e, but the set

*E(/0 = {(z,e|z|2):|zNl}

is not polynomially convex for any e > 0 since it contains the boundary of the

analytic disk AS-S = {(z, eSV9): |z| < 5} for each 5 g [0,1] and DeR. These

disks fill an open subset of C2 that is contained in the polynomial hull of ^E( K )

according to the maximum principle.
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Recall that a C1 submanifold E of a complex manifold M is called totally real if

for each point x g 2 the tangent space £v2 contains no nontrivial complex

subspace. If K is a compact subset of a totally real submanifold 2, then by [2, p.

300] there is an open neighborhood U of K in M and a C2 strictly plurisubharmonic

function p: U -* U + such that

(1.1) K= {* G U\p(x) = 0),        p ^ 0 strictly plurisubharmonic on U.

Conversely, every compact subset K of M of the form (1.1) is locally contained in a

C1 totally real submanifold of M [3]. Therefore we shall say that a compact subset

A" of M is totally real if it is of the form (1.1).

1.1 Theorem. Let M be a Stein manifold and K a compact totally real subset of M

that is 0(M)-convex. Then every sufficiently small C2 perturbation of K in M is also

&(M)-convex.

We need to specify what we mean by a small C2 perturbation of K. We embed the

Stein manifold M in a Euclidean space C" [4, p. 125]. Let U be an open

neighborhood of K in C", and denote by £ the Banach space C2(t/)" of all «-tuples

of complex valued functions ty = ('irx,...,<ffn) of class C2 on U which have finite

norm

n

(1.2) ||*I|e= Esup{|Z)a¥.(z)|: ze U,\a\^l}.
7=1

Theorem 1.1 asserts that the set ^(K) is C(M)-convex for each ^ in an open

neighborhood of the identity map in £ such that ^(K) c M.

1.2 Corollary. Let M be a Stein manifold, let N be a manifold of class C2 and let

B be an open neighborhood of 0 in some Rm. Suppose that E: N X B -» M is a C2

map such that £0 = £( •, 0) is a totally real embedding of N in M. If K is a compact

subset of N such that F0(K) is (P(M)-convex, then Ft(K) is 6(M)-convex for all t in

a neighborhood of 0 in Um. (Here, F, = £(•,/).)

Example 2. If 2 is a totally real affine subspace of C ", then every compact subset

K of 2 is polynomially convex. This follows from the Stone-Weierstrass approxima-

tion theorem and from the fact that the general linear group GL(«,C) acts

transitively on the set of totally real subspaces of C" of dimension k for each

1 < k ^ n. Hence, by Theorem 1.1, every small C2 perturbation of a compact subset

K c 2 is polynomially convex.

We shall consider the same question in the case when A' is a subset with

nonempty interior in a Stein manifold. Suppose that D is an open relatively compact

subset of M whose topological boundary D\D contains a strictly pseudoconvex

hypersurface T such that D lies on the convex side of I\ More precisely, we assume
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that there is an open subset V of M and a strictly plurisubharmonic function p:

V -» M of class C2 such that

(i) D n V= {x G K|p(x) < 0},

(ii) T n K= {x G F|p(x) = 0} cc T, and

(iii) dp * 0 on the set Y C\V.

We define the support of a diffeomorphism ^: M -» A/ to be the closure of the

set {x g M I ̂ (jc) # x} where ^ differs from the identity map.

1.3 Theorem. Let D be an open relatively compact subset of a Stein manifold M that

satisfies the properties (i), (ii) and (iii) above. If the set K = D is 0(M)-convex, then

for every sufficiently small C2 perturbation ^: M -> M supported in V the set ^(K)

is also (P(M)-convex.

1.4 Corollary. If D is a relatively compact strictly pseudoconvex domain in a Stein

manifold M such that D is 6(M)-convex, then every sufficiently small C2-perturbation

of D in M is also 6(M)-convex.

In §2 we prove Theorem 1.1 and Corollary 1.2; in §3 we prove Theorem 1.3 and

Corollary 1.4.

I wish to thank Professor Edgar Lee Stout for several helpful conversations.

2. Polynomial convexity of totally real sets.

Proof of Theorem 1.1. If we embed the Stein manifold M in a complex

Euclidean space C" [4], then a compact subset K of M c C" is (9( A/)-convex if and

only if it is polynomially convex. Therefore it suffices to prove the theorem in the

case when M = C ". Let U be an open subset of C ", p a nonnegative strictly

plurisubharmonic function on U, and let A'={zG i/|p(z) = 0} be a compact

polynomially convex subset of C". Choose a smooth function x on C". 0 < x < 1>

such that x = 1 on a neighborhood of K and x = 0 outside a compact subset of U.

Let £ = C2(U)" be the Banach space with the norm (1.2). Given a \p G £ we

consider the map ¥: C" -* C" given by

(2.1) *(z) = z + X(z)t(z).

Clearly ^ is proper. If the £-norm of \p is sufficiently small, then ty is also regular

and hence a covering projection. Since ^ is one-to-one outside a compact subset of

C ", it has only one sheet and therefore it is a diffeomorphism of C " onto C ". Every

small perturbation of K can be achieved within U with a map of the form (2.1).

Choose a neighborhood V of K, V contained in U, such that x = I on a

neighborhood of V. There exists a Cx strictly plurisubharmonic exhaustion function

4> on C" such that <f> < 0 on the set K but <p > 0 on C" \ V [4, p. 110]. Choose a

C°° function h: U -» [0. oo) that is equal to 0 on (-oo,0] and is strictly convex on

(0, oo ). Then the function

P = X ° P + ch ° <p: C" -> [0, oo)

is a strictly plurisubharmonic exhaustion function of class C2 on C" provided that

the constant c > 0 is chosen sufficiently big, and K = (z g C"|p'(z) = 0}.
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If \p g £ is small, the function t = p'° ^_1 is a small C2 perturbation of p', and

t = p' outside a large compact subset B of C ". Hence the Levi form LT =

E(32p/9z;9zA.)dzj 9 dzk of p is a small perturbation of the Levi form Lp. of p', and

they agree outside B. Since the eigenvalues of £p- are positive on the compact set B,

the same is true for LT. This says that t is a nonnegative strictly plurisubharmonic

exhaustion function on C". The approximation theorem [4, p. 119, Theorem 5.2.8]

implies that the zero set of r is polynomially convex. Since ^(K) = {z g C" | t(z)

= 0}, Theorem 1.1 is proved.

Proof of Corollary 1.2. We may take M = C" as before. Choose an open

relatively compact neighborhood V of K in N. For each / g Mm close to 0 the set

Vt = Ft(V) is a totally real submanifold of C", and the map $,: K0 -* V„ $, =

Ft o F0~x, is close to the identity map on V0 in the C2-sense. Since $,(£0( A')) = Ft(K),

it suffices to show that there is an open neighborhood Uof F0(K) such that for each

/ the map $, can be extended to a map W on U that is close to the identity in the

C2-sense on U.

The map <p,(z) = $,(z) — z, z e. V0, is small in the C2-sense. Using a smooth

partition of unity we extend <pt to a C2 map \p, on U such that

ll'/'rllc2«;/)^ c||<f>Jc2(K0),

where the constant c is independent of t. The map ^,(z) = z + \p„ z G U, is the

desired extension of $,. Corollary 1.2 now follows from Theorem 1.1.

3. Perturbations on strictly pseudoconvex boundary points. We shall first consider

the perturbations of D that are supported in small subsets of V. Fix a point

x0 G T n V, an open neighborhood V0 of x0 such that V0 c V, and a strictly

plurisubharmonic defining function p for D n F0. According to [1, p. 530, Proposi-

tion 1] there exist a bounded strictly convex open set C c C" (n = dim M) with C2

boundary, a holomorphic map $: M —> C" and an open set U c M, x0 G U cz <^ V0,

such that the following hold:

(i)<D(£>)cC,

(ii)«t>({z g î/|p(z)> 0})c C\C,

(iii) 0-1($(í/))= (7, and

(iv) the restriction $ | ̂  is regular and one-to-one.

Let W be a neighborhood of x0 such that W7 c 17. If S^ is a small C2 perturbation

of D supported in W, then ^ = O ° ^ ° O"119(U) is a small C2 perturbation of C

supported in <b(U). We choose ^ so close to the identity map that the set ^(D) is

still convex. For every point j:£ (/\i(i))we have <5(x)gC"\^(C) and hence

there is a holomorphic function A onC" such that h(<fr(x)) = 1, but \h\ < \ on

^(C). Because of (i) and (iii) above it follows that the point x does not lie in the

0(M)-hu\\ of ¥(~DJ. _
To simplify the notation we write K = D and A" = ^{D). The conclusion we

just made is that

(3.1) A" n u= K' n U,
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where K' is the 0(A/)-convex hull of A"'. Since the support of ^ is contained in W,

we have K'\W — K\W, and hence (3.1) implies

(3.2) KT\(U\W) = Kn(u\w).

We shall prove that K' = K'. Assume that K' =£ K' in order to reach a

contradiction. Because of (3.1) the two sets can differ only outside U. Since

K\U = K'\U, the set K'\U is strictly larger than K\U. The polynomially

convex set K has a basis of open neighborhoods Í2 that are smothly bounded strictly

pseudoconvex domains with C(M)-convex closure Q. Thus we may choose Í2 with

these properties that does not contain the set Â ' \ U. By an embedding theorem for

strictly pseudoconvex domains due to Fornaess [1, p. 543] and Khenkin [5, p. 668]

there exists a holomorphic embedding £: M -> C ^ for some N g Z + and a

bounded strictly convex domain B <z CN such that F(Q) c B and £(M\ñ) c

C N \ B. We may assume that 0 g B. Let

(3.3) >0 = inf{/ G U+ \F(K'\U) c tß)

and replace B by t0B. Then

(3.4) F(K'\U)czB,

and there is a point p G F(K'\U) fl ¿5. The set ^ = CN\F(W) is open and

contains the point p. Moreover, it follows from (3.3) and (3.4) that F(K') Pi A c B.

This means that locally near p the polynomially convex set F(K') = F(K') lies on

the convex side of the smooth strictly convex hypersurface bB. According to [1, p.

530] there exists a holomorphic function g defined on a neighborhood of F(K') in

C N such that

g(p) = l    and    \g(q)\<l    for q G F(K')\{p).

If e > 0 is sufficiently small, the set

F(K')n{\g\^l-e}c_F(K')

is polynomially convex and contains F(K'). This is a contradiction since F(K')

= F(K') is the polynomially convex hull of F(K'). This concludes the proof in the

case when the support of the perturbation ^ is sufficiently small.

It remains to consider the general case. Let P be an open relatively compact

subset of T O V. Using the methods introduced by Fornaess in [1] we can show that

there exist an open set U c c V such that U n Y = Y', a holomorphic map £:

M —> C N and a bounded strictly convex domain CcC" with C2 boundary such

that the properties (i)-(iv) above hold. Moreover, the map £ is transversal to bC at

every point x S V. It follows that every small perturbation of D supported in U can

be effected by a small perturbation of C supported in a neighborhood of F(T'). The

proof can be completed in the same way as above. We omit the details.
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