A NONLINEAR ERGODIC THEOREM FOR A REVERSIBLE SEMIGROUP OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

WATARU TAKAHASHI

ABSTRACT. Let C be a nonempty closed convex subset of a Hilbert space, S a right reversible semitopological semigroup, $S = \{T_t : t \in S\}$ a continuous representation of S as nonexpansive mappings on a closed convex subset C into C, and F(S) the set of common fixed points of mappings T_t , $t \in S$. Then we deal with the existence of a nonexpansive retraction P of C onto F(S) such that $PT_t = T_t P = P$ for each $t \in S$ and Px is contained in the closure of the convex hull of $\{T_t x : t \in S\}$ for each $x \in C$.

1. Introduction. Let *H* be a real Hilbert space with norm $\|\cdot\|$ and inner product $\langle \cdot, \cdot \rangle$ and *C* a nonempty closed convex subset of *H*. A mapping $T: C \to C$ is called nonexpansive [3] on *C*, if

$$||Tx - Ty|| \le ||x - y||$$
 for every $x, y \in C$.

We denote by F(T) the set of fixed points of T. The first nonlinear ergodic theorem for nonexpansive mappings was established in 1975 by Baillon [1]: Let C be a closed convex subset of a Hilbert space and T a nonexpansive mapping of C into itself. If the set F(T) is nonempty, then for each $x \in C$, the Cesàro means

$$S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converge weakly to some $y \in F(T)$. In this case, putting y = Px for each $x \in C$, P is a nonexpansive retraction of C onto F(T) such that PT = TP = P and $Px \in \overline{co}\{T^nx: n = 0, 1, 2, ...\}$ for each $x \in C$, where $\overline{co}A$ is the closure of the convex hull of A. In [11], the author proved the existence of such a retraction—"ergodic retraction"—for an amenable semigroup of nonexpansive mappings in a Hilbert space. Then, Hirano and Takahashi [5] extended this result to a Banach space. On the other hand, Rodé [10] found a sequence of means on the semigroups, generalizing the Cesàro means on positive integers, such that the corresponding sequence of mappings converges to a retraction onto the set of common fixed points. Recently Lau [7] considered the problem of weak convergence for a right reversible semigroup of nonexpansive mappings.

In this paper, we deal with the existence of "ergodic retraction" for a right reversible semigroup of nonexpansive mappings, that is, we prove a nonlinear ergodic theorem for such a semigroup in a Hilbert space. This theorem is a generalization

©1986 American Mathematical Society 0002-9939/86 \$1.00 + \$.25 per page

Received by the editors December 4, 1984 and, in revised form, May 1, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47A35, 47H09.

Key words and phrases. Ergodic theorem, reversible semigroup, nonexpansive mapping, fixed point.

of the author's result [11]. In the proof, we also give a characterization of "ergodic retraction".

2. Nonlinear ergodic theorem. Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology such that for each $a \in S$ the mappings $s \to a \cdot s$ and $s \to s \cdot a$ from S to S are continuous. S is called right reversible if any two closed left ideals of S have nonvoid intersection. In this case, (S, <) is a directed system when the binary relation " \leq " on S is defined by $a \leq b$ if and only if $\{a\} \cup \overline{Sa} \supseteq \{b\} \cup \overline{Sb}, a, b \in S$.

Right reversible semitopological semigroups include all commutative semigroups and all semitopological semigroups which are right amenable as discrete semigroups; see [4, 6, p. 335]. Let C be a closed convex subset of a real Hilbert space H and $S = \{T_s : s \in S\}$ a continuous representation of S as nonexpansive mappings on a closed convex set C into C, i.e., $T_{ab}(x) = T_a T_b(x)$, $a, b \in S$, $x \in C$ and the mapping $(s,x) \to T_s(x)$ from $S \times C$ into C is continuous when $S \times C$ has the product topology. Let F(S) denote the set $\{x \in C : T_s x = x \text{ for all } s \in S\}$ of common fixed points of mappings T_s , $s \in S$ in C. Then, as is well known, F(S) is a closed convex subset of C. Let Q be the metric projection of H onto $F(\mathcal{S})$. Then, by Phelps [9], Q is nonexpansive. Now we prove a nonlinear ergodic theorem for a right reversible semigroup of nonexpansive mappings in a Hilbert space.

THEOREM. Let C be a nonempty closed convex subset of a real Hilbert space H, S a right reversible semitopological semigroup and $S = \{T_s : s \in S\}$ a continuous representation of S as nonexpansive mappings of a closed convex set C into C. Suppose that

$$F(S) = \bigcap \{F(T_s) \colon s \in S\} \neq \emptyset.$$

Then the following are equivalent:

(a) $\bigcap_{s \in S} \overline{\operatorname{co}}\{T_t x \colon t \ge s\} \cap F(S) \ne \emptyset$ for each $x \in C$. (b) There is a nonexpansive retraction P of C onto F(S) such that $PT_t = T_t P =$ P for every $t \in S$ and $Px \in \overline{\operatorname{co}}\{T_t x \colon t \in S\}$ for every $x \in C$.

PROOF. (b) \Rightarrow (a). Let $x \in C$. Then $Px \in F(S)$. Also

$$Px \in igcap_{s\in S} \overline{\operatorname{co}}\{T_tx \colon t\geq s\}.$$

In fact,

$$Px = PT_s x \in \overline{\operatorname{co}}\{T_tT_s x \colon t \in S\} \subset \overline{\operatorname{co}}\{T_t x \colon t \ge s\}$$

for every $s \in S$.

(a) \Rightarrow (b). Let $x \in C$ and $f \in F(S)$. Let $b \geq a$. Then, since $b \in \{a\} \cup \overline{Sa}$, we may assume $b \in \overline{Sa}$. Let $\{s_{\alpha}\}$ be a net in S such that $s_{\alpha}a \to b$. Then, for each α ,

$$||T_{s_{\alpha}a}x - f||^2 = ||T_{s_{\alpha}}(T_ax) - T_{s_{\alpha}}f||^2 \le ||T_ax - f||^2.$$

Hence, $||T_b x - f||^2 \le ||T_a x - f||^2$. So the $\lim_{s} ||T_s x - f||^2$ exists. Let

$$g(f) = \lim_{s \to \infty} ||T_s x - f||^2$$
 for every $f \in F(S)$

and

$$r = \inf\{g(f) \colon f \in F(\mathcal{S})\}.$$

Then, since the real-valued function g on F(S) is convex and continuous and $g(f) \to \infty$ as $||f|| \to \infty$, from [2, p. 79], there exists $f_0 \in F(S)$ with $g(f_0) = r$. Hence the set

$$M(x) = \{f \in F(\mathcal{S}) \colon g(f) = r\}$$

is nonempty. We now show that M(x) consists of one point. In fact, let $f_0, f_1 \in M(x)$. Then using the parallelogram law, we obtain

$$\left\|\frac{f_0 - f_1}{2}\right\|^2 = \frac{\|T_s - f_0\|^2}{2} + \frac{\|T_s - f_1\|^2}{2} - \left\|T_s x - \frac{f_0 + f_1}{2}\right\|^2$$

for every $s \in S$. So we have

$$\left\|\frac{f_0 - f_1}{2}\right\|^2 = r - \lim_s \left\|T_s x - \frac{f_0 + f_1}{2}\right\|^2 \le 0$$

and hence $f_0 = f_1$.

Let $M(x) = \{u\}$ and let Q be the metric projection of H onto F(S). Then from [7] we know that $QT_s x$ converges strongly to some $z \in F(S)$. We show u = z. Let $a \leq b$. Then we may assume $b \in \overline{Sa}$. Let $\{s_\alpha\}$ be a net in S such that $s_\alpha a \to b$. Then for each α ,

$$||QT_a x - T_{s_a a} x||^2 = ||T_{s_a} QT_a x - T_{s_a} T_a x||^2 \le ||QT_a x - T_a x||^2$$

So, we have $\|QT_ax - T_bx\|^2 \le \|QT_ax - T_ax\|^2$. Hence if $a \le b$, then

$$|QT_a x - T_b x||^2 \le ||QT_a x - T_a x||^2 \le ||f - T_a x||^2$$

for every $f \in F(S)$. Therefore, for any $a \in S$, we have

$$g(QT_a x) = \lim_b ||T_b x - QT_a x||^2 \le ||T_a x - f||^2$$

for every $f \in F(S)$ by above. Since g is continuous and $QT_a x$ converges strongly to $z \in F(S)$, we have $g(z) \leq \lim_a ||T_a x - f||^2 = g(f)$ for every $f \in F(S)$. Then $u = z = \lim_t QT_t x$.

From (a), let $v \in F(\mathcal{S}) \cap \bigcap_{s \in S} \overline{\operatorname{co}}\{T_t x \colon t \geq s\}$. Then, since

$$||u - v||^2 = ||T_s x - v||^2 - ||T_s x - u||^2 - 2\langle u - v, T_s x - u \rangle$$

for every $s \in S$, we have

$$||u-v||^2 + 2\lim_s \langle u-v, T_s x-u \rangle = \lim_s ||T_s x-v||^2 - \lim_s ||T_s x-u||^2 \ge 0.$$

Let $\varepsilon > 0$. Then we have

$$2\lim_{s}\langle u-v,T_{s}x-u\rangle>-\|u-v\|^{2}-\varepsilon.$$

Hence there exists $s_0 \in S$ such that

$$2\langle u-v,T_sx-u
angle>-\|u-v\|^2-arepsilon$$

for every $s \ge s_0$. Since $v \in \overline{co}\{T_t x : t \ge s_0\}$, we have

$$2\langle u-v,v-u
angle\geq -\|u-v\|^2-arepsilon$$

This inequality implies $||u - v||^2 \le \varepsilon$. Since ε is arbitrary, we have u = v. Therefore

$$F(\mathcal{S}) \cap \bigcap_{s \in S} \overline{\operatorname{co}} \{T_t x \colon t \ge s\} = \{u\}.$$

Set $Px = \lim_{t} QT_t x$ for every $x \in C$. Then we have $T_s Px = Px$ and

$$PT_s x = \lim_t QT_t T_s x = \lim_t QT_{ts} x = Px$$

for every $s \in S$ and $x \in C$. From $\{Px\} = F(S) \cap \bigcap_{s \in S} \overline{\operatorname{co}}\{T_t x \colon t \geq s\}$, it is obvious that $Px \in \overline{\operatorname{co}}\{T_s x \colon s \in S\}$ for each $x \in C$. Since

$$\|Px-Py\|=\lim_t\|QT_tx-QT_ty\|\leq\|x-y\|$$

for every $x, y \in C$, it follows that P is nonexpansive.

Lau and Takahashi [8] obtained an analogous result in a Banach space. However the Theorem is sharper than [8]. The following corollary was actually proved in [11].

COROLLARY. Let C be a nonempty closed convex subset of a real Hilbert space H and S an amenable semigroup of nonexpansive mappings t of C into itself. Suppose that

$$F(S) = \bigcap \{F(t) \colon t \in S\} \neq \emptyset.$$

Then, there exists a nonexpansive retraction P of C onto F(S) such that Pt = tP = P for every $t \in S$ and $Px \in \overline{co}\{tx: t \in S\}$ for every $x \in C$.

PROOF. Let μ be an invariant mean on S and $x \in C$. Then, since $F(S) \neq \emptyset$, $\{tx: t \in S\}$ is bounded and hence for each y in H, the real-valued function $t \mapsto \langle tx, y \rangle$ is bounded. Denote by $\mu_t \langle tx, y \rangle$ the value of μ at the function. Then this is linear and continuous in y. So by the Riesz theorem, there exists an $x_0 \in H$ such that $\mu_t \langle tx, y \rangle = \langle x_0, y \rangle$ for every $y \in H$ and the point x_0 is contained in $F(S) \cap \bigcap_{s \in S} \overline{\operatorname{co}}\{tx: t \geq s\}$. For details, see [11].

REFERENCES

- 1. J. B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), 1511-1514.
- 2. V. Barbu and Th. Precupanu, Convexity and optimization in Banach spaces, Editura Academiei R.S.T., Bucharest, 1978.
- 3. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044.
- 4. M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
- 5. N. Hirano and W. Takahashi, Nonlinear ergodic theorems for an amenable semigroup of nonexpansive mappings in a Banach space, Pacific J. Math. 112 (1984), 333-346.
- 6. R. D. Holmes and A. T. Lau, Nonexpansive actions of topological semigroups and fixed points, J. London Math. Soc. (2) 5 (1972), 330-336.
- A. T. Lau, Semigroup of nonexpansive mappings on a Hilbert space, J. Math. Anal. Appl. 105 (1985), 514-522.
- 8. A. T. Lau and W. Takahashi, Weak convergence and nonlinear ergodic theorems for reversible semigroups of nonexpansive mappings (to appear).
- 9. R. R. Phelps, Convex sets and nearest points, Proc. Amer. Math. Soc. 8 (1957), 790-797.
- G. Rodé, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl. 85 (1982), 172–178.
- 11. W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256.

DEPARTMENT OF INFORMATION SCIENCES, TOKYO INSTITUTE OF TECHNOLOGY, OH-Okayama, Meguro-ku, Tokyo, Japan