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DECOMPOSITIONS OF SPACES DETERMINED
BY COMPACT SUBSETS

YOSHIO TANAKA

ABSTRACT. Let X be a fc'-space, and let 7 be a closed cover of (locally)

compact subsets of X. Then X is decomposed into a closed discrete subset

and a locally compact subset if X is dominated by 7, or X has the weak

topology with respect to a point-countable cover 7. Here, a cover of a space

is point-countable if every point is in at most countably many elements of the

cover.

Introduction. We assume that all spaces are Hausdorff, and that all maps

are continuous and onto. Suppose that /: X —> Y is a closed map. When X is a

locally compact paracompact space, K. Morita [14] showed that Y is decomposed

into a closed discrete subset and a locally compact subset. When X is a metric

space, N. Lasnev [9] showed that Y is decomposed into a u-discrete subset and a

metric subset. Here, a subset of Y is o-discrete if it is a countable union of closed

discrete subsets of Y. However, if / is a quotient map, not every paracompact space

y is decomposed into a r7-discrete subset and a subset which is metric or locally

compact, even if every f~x(y) is finite and X is locally compact separable metric;

see Example 3.1.

Now, in terms of weak topology, let us recall some definitions related to quotient

spaces of locally compact spaces. Let C be a cover of a space Z. Then Z is

determined by C [8], or Z has the weak topology with respect to C, if F c Z is

closed in Z if and only if F n C is relatively closed in C for every G G C. Here we

can replace "closed" by "open". A space is a k-space if it is determined by the cover

of all compact subsets. It is well known that every fc-space is characterized as a

quotient image of a locally compact (paracompact) space. Let J be a closed cover of

a space Z. Then Z is dominated by 7 [10], if the union of any subcollection 7' of 7 is

closed in Z and the union is determined by 7'. Every CW-complex is dominated by

compact metric subsets [19]. Every locally compact paracompact space X, as well

as every closed image of X, is dominated by a hereditarily closure-preserving cover

of compact subsets. Here, a cover {GQ} of a space is hereditarily closure-preserving

if \JaBa = \Ja Ba for any Ba C Ca. A space y is a k'-space [3], if whenever

y G A, then y G A 0 C for some compact subset G of Y. A space Y is Fréchet,

if whenever y G A, there exists a sequence in A converging to y. Every locally

compact and every Fréchet space is a fc'-space. Every fc'-space is characterized as

an image of a locally compact (paracompact) space under a pseudo-open map [2].

Recall that a map /: X —► Y is pseudo-open [2], or hereditarily quotient, if for any
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y G Y and any open subset U containing /_1(y), y G int f(U); equivalently, for any

A C y, f[f~x(A) is quotient [2]. Closed maps and open maps are psuedo-open,

and pseudo-open maps are quotient.

In this paper, we show that every fc'-space (more generally, singly bi-fc-space

[12]) dominated by locally compact subsets, or determined by a point-countable

closed cover of locally compact subsets, is decomposed into a closed discrete subset

and a locally compact subset. Thus, for a fc'-space Y, if y is a CW-complex or

an image of a locally compact paracompact space under a quotient map with each

point-inverse Lindelöf, then Y is decomposed into a closed discrete subset and a

locally compact subset.

1. Spaces determined by a point-countable cover of compact sub-

sets. Let y be a space. For a cover C of Y, let us consider the following condition

(*) with respect to C:

(*) HyGA~, then y G AnC with y G G for some C gC.

LEMMA l.l. Let Y be a k-space, and C be a point-countable cover ofY. If Y

satisfies (*) with respect to C, then Yo = {y G Y; y ^ int U C for any finite C C C}

is discrete in Y.

PROOF. Suppose that Yq is not discrete in Y. Then some A C Yo is not closed

in y. Since y is a fc-space, there exists a compact subset K such that K n A is

not closed. Since K n A is an infinite subset of K, there exists an infinite subset

{yn; n G N} of K n A accumulating at some y G Y with yn ^ y. Let Vn be a

neighborhood of yn with Vn $ y. Let {C G C; C 3 y} = {Gi,G2,...}. For each

ne N, let Bn = Um<„ Gm, and let An = Vn - Bn. Since each yn G Y0, yn G A~^.

Thus, y G UneJV An- By condition (*), y G (\Jn€N An) H G¿ for some i G N. Thus,

y G Aj for some j < i, hence y G V3-, This contradiction completes the proof of the

lemma.

According to E. Michael [12], a space is singly bi-k, if it is a pseudo-open image

of a paracompact M-space. Here, a space is paracompact M-space if it admits a

perfect map onto a metric space, fc'-spaces are singly bi-fc, and singly bi-fc-spaces
are fc-spaces [12].

LEMMA 1.2. If Y is a singly bi-k-space determined by a point-countable closed

cover C, then Y satisfies (*) with respect to C.

PROOF. Let y GA~. Since Y is singly bi-fc, by [12, Definition 5.E.1], there exists

a sequence {An;n G N} such that y G An An for all n, and if yn G An, then

{yn; n G N} has an accumulation point in Y. Thus, as in the proof of [17, Lemma

6], some An is covered by a finite subcollection C of C. Then y G .An G with y GC

for some G G C'■ Then Y satisfies (*) with respect to C.

From Lemmas 1.1 and 1.2, we have

THEOREM 1.3. If Y is a singly bi-k-space determined by a point-countable
closed cover of locally compact subsets, then Y is decomposed into a closed discrete

subset and a locally compact subset.

Example 3.1 shows that the singly bi-fc-ness of Y is essential in Theorem 1.3,
and also in Theorem 1.4 below.

Recall that a space is o-metric if it is a countable union of closed metric subsets.
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THEOREM 1.4. Let Y be a singly bi-k-space determined by a point-countable

closed cover {Ya} of metric subsets. Then (1) and (2) below hold.

(1) y is decomposed into a closed discrete subset and a subset with a point-

countable base.

(2) // y is a paracompact space, or a regular space with each Ya locally separable,

then Y is a o-metric space decomposed into a closed discrete subset and a metric

subset.

PROOF. (1) By Lemmas 1.1 and 1.2, Y is decomposed into a closed discrete

subset and a locally metric subset Y' of Y. Since Y' is open in Y, Y' is determined

by a point-countable closed cover {Ya n Y'} of Y'. Let X = Y^aO^a H Y'), where

Y denotes topological sum. Then X is metric, and the obvious map of X onto

y is a quotient and s-map (i.e., each point-inverse is separable). Since Y' is first

countable, by [6, Theorem 1'] Y' has a point-countable base.

(2) For y G Y, let A = U^c^y* 9 y}- Since Y is singly bi-fc, by Lemma 1.2,
y £ X — A, hence y G int A. Thus y is a locally tr-metric space. In case where Y is

paracompact, y is a er-metric space. Then the open subset Y' in (1) is an FCT-set of

y. Hence Y' is paracompact. Since Y' is locally metric, Y' is metric. In case where

y is regular and each Ya is locally separable, each Ya is determined by a locally

finite closed cover {Yaß;ß} of separable metric subsets. Hence Y is determined

by a point-countable closed cover {Yaß;a,ß} of separable metric subsets. But Y

is singly bi-fc, hence is Fréchet by Lemma 1.2. Then, since Y is regular, Y is

paracompact by [8, Corollary 8.9]. As seen above, then, Y is tr-metric and yi is

metric. Therefore, in any case, y is a c-metric space decomposed into a closed

discrete subset and a metric subset.

COROLLARY 1.5. Let f:X —y Y be a quotient s-map such that X is locally

compact metric. If Y is a regular fc'-space, then Y is a o-metric space decomposed

into a closed discrete subset and a (locally compact) metric subset.

PROOF. Since X is determined by a locally finite cover {Xa} of compact metric

subsets, y is determined by a point-countable cover {f(Xa)} of compact metric

subsets. Thus the corollary follows from Theorem 1.4(2).

The local compactness of X in Corollary 1.5 is essential. Indeed, there exists a

closed image y of a separable metric space such that Y is not c-metric [7], hence

is not decomposed into a closed discrete subset and a metric subset. Also, there

exists a paracompact space X which is an open s-image of a metric space such that

X is not a o"-space (hence, not er-metric), nor is X decomposed into a cr-discrete

subset and a metric subset; see Example 3.2.

Recall that a space X is meta-Lindelöf if every open cover of X has a point-

countable open refinement. Every meta-compact space is meta-Lindelöf.

LEMMA 1.6. Let f:X —> y be a quotient map with X locally compact. Suppose

that (a) or (b) below holds.

(a) X is meta-Lindelöf and every f~x(y) is separable.

(b) X is paracompact and every f_1(y) is Lindelöf.

If Y is a singly bi-k-space; equivalently, f is pseudo-open, then Y is determined

by a point-countable cover C such that each element of C has a compact closure,

and Y satisfies (*) with respect to C.
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PROOF. Let us assume case (a) (the proof for case (b) is similar). Then X is

determined by a point-countable open cover {GQ} such that TTA are compact. Since

/ is a quotient s-map, Y is determined by a point-countable cover C = {f(Ga)}. To

show that / is pseudo-open, let y e y and U be any open subset containing /_1(y).

Suppose that y £ int f(U), hence y G Y — f(U). Since Y is singly bi-fc, as in the

proof of Lemma 1.2 (cf. [17, Lemma 6]), y € {Y — f(U)) n f(Gao) for some qo-

Thus y G K — f(U), where K = f(Gao). Let g = f\Gao. Since GQ0 is compact, g

is closed. But g~x(y) C U n G~Z0. Thus y G int/f g(U nGao), hence V £ K ~ f(u)-
This is a contradiction. Thus / is pseudo-open. To show that Y satisfies (*) with

respect to C, let y G A. Since / is pseudo-open, /_1(y) n f_1(A) ^ 0. Let x G

f-1(y)nJzri(Ä), and let x G GQl. Then x G /-^(A) n Gai, thus y G Aí)f(Gai)
and y 6 /(GQl). Thus y satisfies (*) with respect to C.

By Lemmas 1.1 and 1.6, we have the following theorem. Example 3.1 shows

that "pseudo-open map" cannot be weakened to "quotient map", and Example 3.3

shows that the condition of /_1(y) is essential in the theorem, even if X is locally

compact metric.

THEOREM 1.7. Let f:X —> Y be a pseudo-open map, or a quotient map with

Y a k'-space. If X is a locally compact space, and (a) or (b) of Lemma 1.6 holds,

then Y is decomposed into a closed discrete subset and a locally compact subset.

2. Spaces dominated by compact subsets.

LEMMA 2.1. Let X be dominated by a closed cover {Xa}, and let Ya =

Xa — \}ß<aXß. If X is singly bi-k, then {Ya} is a hereditarily closure-preserving

closed cover of X.

PROOF. Suppose that {Ya} is not hereditarily closure-preserving. Then there

exist closed subsets Aa of Ya such that (JQ Aa is not closed in X. Since X is a fc-

space, there exists a compact subset K of X such that ((JQ Aa) n K is not closed in

K. Then there exists an infinite subset {xn; n G N} of X such that xn G AUn n K

with an < otn+i- Let x G X be an accumulation point of {xn;n G N}, which

we may suppose different from all xn ■ Let each Vn be a neighborhood of xn with

Vñ 3 x. Let Bn = Vnn(Xan-\J0<an Xß), B = lJnGiV Bn, and let G = \JneN Xan.

Then x G Bc. But G is a singly bi-fc-space determined by a countable closed cover

{Xan; n G N}. Thus, by Lemma 1.2, x G B (1 Xai for some i G N. Hence x G Bj

for some j < i, thus x GVj. This contradiction completes the proof of the lemma.

Since every fc'-space is singly bi-fc, the "only if" part of the following follows

from Lemma 2.1. The "if" part is easy.

COROLLARY 2.2. Let X be dominated by a cover {Xa} of compact subsets, and

let Ya = Xa — \Jß<a Xß. Then X is a k'-space if and only if {Ya} is hereditarily

closure-preserving.

LEMMA 2.3. Let 7 be a hereditarily closure-preserving closed cover of a space

Y. If Y is a k-space, then Yo = {y G Y; 7 is not locally finite at y} is discrete in

Y.

PROOF. Suppose that Yq is not discrete in Y. Then some A C Yo is not

closed in Y.   Since y is a fc-space, there exists a compact subset K such that
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K n A is not closed. Thus there exists an infinite subset {yn;n G N} of K n A

accumulating at some y G Y. Since yn G Yo, 7 is not point-finite at y„, so there

exists {Fn;n G N} C 7 with yn G Fn. Thus {yn;n G N} is discrete in y, a

contradiction.

THEOREM 2.4. Let Y be a singly bi-k-space dominated by a closed cover of

locally compact subsets (resp. metric subsets). Then Y is decomposed into a closed

discrete subset and a locally compact subset (resp. metric subset).

PROOF. This theorem follows from Lemmas 2.1 and 2.3. For the parenthetic

part, use the well-known fact that every space dominated by metric subsets is

hereditarily paracompact [10 or 13].

In the following corollary, the fc'-ness of Y is essential; see Example 3.4.

COROLLARY 2.5. Let Y be a CW-complex. If Y is a fc'-space, then Y is de-

composed into a closed discrete subset and a locally compact metric subset.

THEOREM 2.6.   The following are equivalent:

(1) Y is a pseudo-open image of a paracompact M-space (or a locally compact

space), and Y is dominated by compact subsets.

(2) Y is a closed image of a locally compact paracompact space.

Proof. (2) —► (1) is straightforward. (1) —♦ (2) follows from Lemma 2.1 and

the fact that, for every hereditarily closure-preserving closed cover {Ya} of Y, the

obvious map of Ya Ya onto ^ ^s dosed.

THEOREM 2.7.   The following are equivalent:

(1) y is a pseudo-open image of a locally compact Lindelöf space.

(2) Y is a closed image of a locally compact Lindelöf space.

PROOF. It suffices to prove (1) —► (2). Since y is a quotient image of a locally

compact Lindelöf space, by [15], Y is determined by a countable cover C of compact

subsets. Here we can assume that C is increasing, so Y is dominated by C, while,

y is a fc'-space. Then (1) —y (2) can be given using Lemma 2.1.

3. Examples. A space y is a q-space [11] if each point of Y has a sequence

{[/„; n G N} of open neighborhoods such that, if yn G Un, then {yn; n G N} has an

accumulation point in Y. First countable spaces and locally compact spaces, more

generally spaces of pointwise-countable type [3], are ç-spaces.

EXAMPLE 3.1. A regular Lindelöf space Y is determined by a point-finite, count-

able cover {Zn; n G w} of compact metric subsets, hence y is a quotient finite-to-one

image of a locally compact separable metric space 5Znew %n- But, for any <r-discrete

subset Yo of Y, Y — Yo is not a g-space.

PROOF. For each n G u>, define a subspace Zn of R3 by Zo = {0} x A, and

Zn = Ax {1/n}, where A = [0,1] x [0,1]. Let Y = (jneu> Zn, and let U C Y be

open in Y whenever every U D Zn is open in Z„. Then y is a space determined

by a point-finite, countable cover {Zn;n G co} of compact metric subsets. For any

cr-discrtete subset Y0 of Y, let Yi = Y — YQ. Since each Zn n Yq is countable (=

at most countable), there exists yo = (0, t,0) G Yi such that (0, t, 1/n) G Yi for all

nG N. But no sequences {zn;n G N} with zn G Zn — Zo have accumulation points

in y. Thus y is not a g-space.
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EXAMPLE 3.2. A regular Lindelöf space X which is an open s-image of a metric

space, but for any cr-discrete subset Xn of X, X - Xn is neither a cr-space nor a

p-space in the sense of A. V. Arhangel'skii [1].

PROOF. In view of the proof of [4, Problem 285, p. 146], there exists a subset A

of [0,1] such that A and its complement have size 2", and A does not contain C — D

for any uncountable compact subset G of [0,1] and for any countable subset D of

[0,1]. Let X be the space obtained from [0,1] by isolating the points of A. Since

X is a regular space with a point-countable base, X is an open s-image of a metric

space by [16]. Now, let Xn be any cr-discrete subset of X, and let Xi = X — Xn.

Since X is Lindelöf, Xn is countable. Thus Xi is not separable. But Xi is Lindelöf.

Hence Xi is not a cr-space. Also, Xi is not a p-space, for every paracompact p-space

with a point-countable base is metric [5].

EXAMPLE 3.3. A regular Lindelöf space Y which is a pseudo-open image of

a locally compact metric space, but for any cr-discrete subset Yo of Y, Y - Yo is

neither first countable nor a p-space.

PROOF. Let T = DU {oo} be the one point compactification of an uncountable

discrete space D. Let Z = T xT. Suppose that Z is decomposed into a cr-discrete

subset Zo and a subset Zi of Z. Since Zq is countable, there exists d G D such that

(oo,d) G Zi, but Zi has no countable bases at the point (oo,d). Then Zi is not

first countable. Now, let Y be a topological sum of Z and the space X of Example

3.2. Since Y is Fréchet, Y is a pseudo-open image of a locally compact metric space

by [2]. However, for any cr-discrete subset Yo of Y, Y - Yo is neither first countable

nor a p-space.

EXAMPLE 3.4. A countable CW-complex X such that for any cr-discrete subset

Xo of X, X - Xo is not a g-space.

PROOF. For each nG N, let Ln be a copy nAnBnCnDn of a rectangle OABCD.

Let X be the space obtained from YneN ^n by identifying all of segments AnBn

to a segment. Then X is a countable CW-complex satisfying the desired property.
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