A FIXED POINT THEOREM FOR LOCALLY NONEXPANSIVE MAPPINGS IN NORMED SPACES

C. WATERS

ABSTRACT. It is shown that global conditions in a recent result of W. A. Kirk can be replaced with the corresponding local conditions in case the domain is connected. Also a remark is made about the proof of the theorem referenced.

1. In this paper we adopt the notation of [2]. Let X be a compact subset of a normed linear space E, and T: $X \to X$ be a mapping. We let $\Delta'X$ denote the boundary of X in $\overline{co}X$. The mapping T is locally nonexpansive (contractive) if for each $x \in X$ there exists $\varepsilon > 0$ so that whenever y and z are distinct points in X and y, $z \in B(x, \varepsilon)$, $||T(y) - T(z)|| \le ||y - z|| (||T(y) - T(z)|| < ||y - z||)$. The mapping T is called nonexpansive (contractive) if for each $x \in X$, ε is unbounded.

A metric space (X, d) is chainable if for each $\varepsilon > 0$ and points x and y in X, there exists a finite set of distinct points $x = x_1, \ldots, x_n = y$ in X so that $d(x_i, x_{i+1}) \le \varepsilon$ for each $i = 1, \ldots, n - 1$.

Rosenholtz [3] proved the following lemma.

LEMMA 1. Let (X, d) be a compact and connected metric space. Then for each $\varepsilon > 0$ and $x, y \in X$ there exists an ε -chain between x and y, and the mapping $d_{\varepsilon}: X \times X \to R$, defined by

(1)
$$d_{\epsilon}(x, y) = \inf \left\{ \sum_{i=1}^{n-1} d(x_i, x_{i+1}) \middle| x = x_1, \dots, x_n = y \right\}$$

is an ε -chain between x and y,

is a metric on X equivalent to d. Furthermore, for each $x, y \in X$ and $\varepsilon > 0$ there exists an ε -chain $x = x_1, \ldots, x_n = y$ so that

(2)
$$d_{e}(x, y) = \sum_{i=1}^{n-1} d(x_{i}, x_{i+1}).$$

2.

LEMMA 2. Let X be a compact connected subset of a Banach space. If $f: X \to X$ is locally nonexpansive on X and locally contractive on ΔX there exists $\delta > 0$ so that f is

©1986 American Mathematical Society 0002-9939/86 \$1.00 + \$.25 per page

Received by the editors June 25, 1984 and, in revised form, July 15, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25.

Key words and phrases. Locally contractive, locally nonexpansive, chainable.

nonexpansive and locally contractive on $\Delta' X$ with respect to d_{δ} as defined in (1), and $d_{\delta}(x, y) = ||x - y||$ if either $||x - y|| \leq \delta$ or $[x, y] \subseteq X$.

PROOF. By the compactness of X there exists $\delta_1 > 0$ so that if $x, y \in X$ and $||x - y|| < \delta_1$, then $||f(x) - f(y)|| \le ||x - y||$. Also by the compactness of $\Delta'X$ there exists $\delta_2 > 0$ so that for all distinct points $x, y \in \Delta'X$ with $||x - y|| < \delta_2$, ||f(x) - f(y)|| < ||x - y||. Let $\delta = 2^{-1} \min{\{\delta_1, \delta_2\}}$. By Lemma 1 we may choose the metric $d \equiv d_{\delta}$ as defined in (1) to remetrize X. The second assertion in Lemma 2 easily follows from the definition of d and the triangle inequality of the metric induced by the norm. To see the first assertion, let $x, y \in X$ and $x = x_1, \ldots, x_n = y$ be a δ -chain in X from x to y satisfying (2).

By the local nonexpansiveness of f

(3)
$$d(f(x), f(y)) \leq \sum_{i=1}^{n-1} d(f(x_i), f(x_{i+1})) = \sum_{i=1}^{n-1} ||f(x_i) - f(x_{i+1})||$$
$$\leq \sum_{i=1}^{n-1} ||x_i - x_{i+1}|| = d(x, y).$$

Therefore f is nonexpansive with respect to d.

The local contractiveness of f with respect to d follows from the definition of δ , and the fact that d(x, y) = ||x - y|| if $||x - y|| < \delta$.

LEMMA 3. Let X, f, satisfy the hypotheses of Lemma 2, and d satisfy the conclusion of Lemma 2. If $x, y \in X$, $x = x_1, ..., x_n = y$ is a δ -chain from x to y satisfying (2), and d(f(x), f(y)) = d(x, y), then there does not exist consecutive points of $x = x_1, ..., x_n = y$ in $\Delta' X$.

PROOF. Suppose there exists $j \in \{1, ..., n-1\}$ so that $x_j, x_{j+1} \in \Delta' X$. Then by Lemma 2 and (2),

(4)
$$d(f(x), f(y)) \leq \sum_{i=1}^{n-1} d(f(x_i), f(x_{i+1}))$$
$$< \sum_{i=1}^{n-1} d(x_i, x_{i+1}) = d(x, y)$$

But (4) contradicts d(f(x), f(y)) = d(x, y).

THEOREM 1. Let X be a compact nonempty connected subset of a Banach space. If $f: X \to X$ is locally nonexpansive on X and locally contractive on $\Delta'X$, then f has a fixed point.

PROOF. Let d be the metric as guaranteed in Lemma 2. For a subset A of X, let $\overline{\delta}(A)$ and $\delta(A)$ be the d-diameter and norm diameter of A respectively. By [2] we can choose a minimal invariant nonempty subset M of X with minimal d-diameter. By [1] f restricted to M is a d-isometry.

We first show $\delta(M) = \overline{\delta}(M)$. By Lemma 2 it is sufficient to show for all $m_1, m_2 \in M, [m_1, m_2] \subseteq X$. For $m_1, m_2 \in M$ let $m_1 = x_1, \ldots, x_n = m_2$ be a δ -chain satisfying (2). If for some $i = 1, \ldots, n-1, [x_i, x_{i+1}] \notin X$, we may choose distinct

points $z_1, z_2 \in [x_i, x_{i+1}] \cap \Delta' X$ so that $||x_i - x_{i+1}|| = ||x_i - z_1|| + ||z_1 - z_2|| + ||z_2 - x_{i+1}||$. Then by (1)

(5)
$$d(f(m_1), f(m_2)) \leq d(f(x_1), f(x_2)) + \dots + d(f(x_1), f(z_1)) + d(f(z_1), f(z_2)) + \dots + d(f(x_{n-1}), f(x_n)) < d(m_1, m_2).$$

But (5) contradicts that f is a d-isometry on M. Hence for i = 1, ..., n - 1, $[x_i, x_{i+1}] \subseteq X$.

Let $\sigma \equiv d(m_1, m_2)$, and let $g: [0, \sigma] \to X$ be the arc length parametrization of the polygonal path

(6)
$$P \equiv \bigcup_{i=1}^{n-1} [x_i, x_{i+1}],$$

with $g(0) = x_1$ and $g(\sigma) = x_n$. Let

(7)
$$A \equiv \left\{ t \in [0,\sigma] | [m_1,g(s)] \subseteq X \text{ for } s \in [0,t] \right\}.$$

The set A is trivially nonempty. Let $u \equiv \sup\{t | t \in A\}$. We show $u = \sigma$. Let $\{t_n\}$ be a sequence in A with $\{t_n\} \uparrow u$, and $s \in [0, 1]$. Then,

(8)
$$||(1-s)x_1 + sg(u) - (1-s)x_1 - sg(t_n)|| = s||g(u) - g(t_n)||.$$

Since X is closed and g is continuous, (8) implies $(1 - s)x_1 + sg(u) \in X$. Hence $[x_1, g(u)] \subseteq X$.

If $u < \sigma$, we can choose a sequence $\{t_n\}$ in $[0, \sigma]$ decreasing to u, and points z_n , y_n in $[m_1, g(t_n)]$ so that $||z_n - y_n|| > \delta$ and $[z_n, y_n] \subset \operatorname{co} X \setminus X$. If for some $n y_n$, z_n cannot be chosen so that $||z_n - y_n|| > \delta$, we can form a δ -chain $m_1 = y_1, \ldots, y_k = g(t_n)$ along $[m_1, g(t_n)]$ containing two consecutive boundary points so that

$$\sum_{i=1}^{k-1} \|y_i - y_{i+1}\| = d(m_1, g(t_n)).$$

Then by (1) $m_1 = y_1, \ldots, y_k, x_{j+1}, \ldots, x_n = m_2$, where $g(t_n) \in [x_j, x_{j+1}]$ is a δ -chain satisfying (2) with respect to m_1 and m_2 . Applying Lemma 3 we reach a contradiction. By the compactness of $\overline{co} X$ we may assume there exist distinct points y, z in $\overline{co} X$ so that $z_n \to z$ and $y_n \to y$. By the continuity of g and the definition of $\Delta' X$

(9)
$$[z, y] \subseteq [x_1, g(u)] \cap \Delta' X.$$

Let $g(u) \in [x_i, x_{i+1}]$. Then by (1)

(10)
$$d(m_1, m_2) = ||m_1 - g(u)|| + d(g(u), x_{j+1}) + \cdots + d(x_{n-1}, x_n).$$

By (9) we may choose a δ -chain $m_1 = y_1, \ldots, y_k = g(u)$ in $[m_1, g(u)]$ containing two consecutive points in $\Delta' X$ satisfying $||m_1 - g(u)|| = \sum_{i=1}^{k-1} d(y_i, y_{i+1})$. Then by (10)

(11)
$$d(f(m_1), f(m_2)) \leq d(f(y_1), f(y_2)) + \dots + d(f(y_{k-1}), f(y_k))$$

 $+ d(f(y_k), f(x_{j+1})) + \dots + d(f(x_{n-1}), f(x_n))$
 $< d(m_1, m_2).$

But (11) contradicts that f restricted to M is a d-isometry. Thus $[m_1, m_2] \subseteq X$. It now follows that $\delta(M) = \overline{\delta}(M)$.

Note that for each pair of points m_1 , m_2 in M with $d(m_1, m_2) \ge \delta$ there exists $\varepsilon > 0$ so that if $y, z \in X$ with $y \in B_d(m_1, \varepsilon)$ and $z \in B_d(m_2, \varepsilon)$, then d(y, z) = ||y - z||. If this is not the case, there exist $m_1, m_2 \in M$ with $d(m_1, m_2) \ge \delta$; so for each $\varepsilon > 0$ there exist $y_{\varepsilon} \in B_d(m_1, \varepsilon)$, $z_{\varepsilon} \in B_d(m_2, \varepsilon)$ and $a_{\varepsilon}, b_{\varepsilon} \in [y_{\varepsilon}, z_{\varepsilon}] \cap \operatorname{co} X \setminus X$ so that $||a_{\varepsilon} - b_{\varepsilon}|| > \delta$. By the compactness of $\operatorname{co} X$ we can choose distinct points a, b in X so that $[a, b] \subseteq [m_1, m_2] \cap \Delta X$. But then we can form a δ -chain from m_1 to m_2 along $[m_1, m_2]$ containing consecutive points in ΔX and apply Lemma 3 to reach a contradiction.

Let $A \equiv \{(u, v) \in M \times M | d(u, v) \ge \delta\}$. By the compactness of A we can choose a number ε in $(0, 3^{-1}\delta)$ so that if (u, v) is in A and $y, z \in X$ with $y \in B_d(u, \varepsilon)$ and $z \in B_d(v, \varepsilon)$, then d(y, z) = ||y - z||. By the definition of ε and by the triangle inequality,

(12) for all
$$u, v \in M$$
, and $y \in B_d(u, \varepsilon)$ and $z \in B_d(v, \varepsilon)$,
$$d(y, z) = ||y - z||.$$

If $\delta(M) \neq 0$, we can choose distinct points $m_1, m_2 \in M$ and $t \in (0, 1)$ so that $x_0 \equiv (1 - t)m_1 + tm_2$ is in the interior of X with respect to co X and $d(x_0, m_1) < \epsilon$. Otherwise we can choose a δ -chain satisfying (2) between m_1 and m_2 along $[m_1, m_2]$, containing two consecutive points in $\Delta' X \cap B_b(m_1, \epsilon)$ and contradict $d(f(m_1), f(m_2)) = d(m_1, m_2)$.

Let N denote the set of nonnegative integers. Also for each $x \in X$, let $w(x) \equiv \overline{\{f^n(x) | n \in N\}}$. By the minimality of M, $w(m_1) = M$ and for each $n \in N$, $f^n(M) = M$.

By the normal structure of co M there exist $y \in co M$, and a real number r satisfying $0 < r < \delta(M)$ so that $||y - m|| \le r$ for all $m \in M$.

Since x_0 is in the interior of X with respect to co X and $y \in co X$, there exists $s \in (0, 1)$ so that $z \equiv (1 - s)x_0 + sy \in B_d(m_1, \varepsilon) \cap X$. Then for all $m \in M$,

(13)
$$||z - m|| \leq (1 - s)||x_0 - m|| + s||y - m|| \leq (1 - s)\delta(M) + sr.$$

Let $\bar{r} \equiv (1 - s)\delta(M) + sr$. Since $s \in (0, 1)$, $\bar{r} < \delta(M)$. Let $m, m_n \in M$ so that for all $n \in N$, $f''(m_n) = m$. Then by the nonexpansiveness of f, and (12) and (13)

(14)
$$d(f^{n}(z), m) = d(f^{n}(z), f^{n}(m_{n})) \leq d(z, m_{n})$$
$$= ||z - m_{n}|| \leq \bar{r}.$$

We show next that $\overline{\delta}(w(z)) < \overline{\delta}(M)$, which will contradict the definition of M and imply $\overline{\delta}(M) = 0$.

By the continuity of f it suffices to show for all $m, n \in N$, $d(f^n(z), f^m(z)) \leq \bar{r}$. Since $z \in co M$, by (14), $||f^n(z) - z|| \leq \bar{r}$. By (12) for $m, n \in N$ with m > n,

(15)
$$d(f^{m}(z), f^{n}(z)) \leq d(f^{m-n}(z), z) = ||f^{m-n}(z) - z|| \leq \bar{r}.$$

Therefore $\overline{\delta}(w(z)) \leq \overline{r}$. But (15) contradicts the definition of M. Hence $\delta(M) = 0$. Since $M \neq \emptyset$, $M = \{m\}$ for some $m \in X$. Therefore f(m) = m. 3. We now comment on Theorem (1) in [2]. After choosing a minimal nonempty compact invariant set M with minimal diameter, Kirk claimed $co M \subseteq X$ by showing for all $m_1, m_2 \in M$, $[m_1, m_2] \subseteq X$. Clearly it is not enough to show $co M \subseteq X$ unless one also shows $[m_1, m_2] \subseteq M$. However, one can avoid this situation by choosing an interior point x_0 as in Theorem 1 and then show $\delta(w(w_0)) < \delta(M)$.

References

1. H. Freundenthal and W. Hurewicz, Duhnungen, Verkurzungen, Isometrien, Fund. Math. 26 (1936), 120-122.

2. W. A. Kirk, Remarks on fixed points and boundaries, Proc. Amer. Math. Soc. 87 (1983), 62-64.

3. I. Rosenholtz, *Evidence of a conspiracy among fixed point theorems*, Proc. Amer. Math. Soc. **52** (1975), 312–318.

DEPARTMENT OF MATHEMATICS, MANKATO STATE UNIVERSITY, MANKATO, MINNESOTA 56001