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ON POWERS OF CHARACTERS
AND POWERS OF CONJUGACY CLASSES

OF A FINITE GROUP

HARVEY I. BLAU AND DAVID CHILLAG

ABSTRACT. Two results are proved. The first gives necessary and sufficient

conditions for a power of an irreducible character of a finite group to have

exactly one irreducible constituent. The other presents necessary and sufficient

conditions for a power of a conjugacy class of a finite group to be a single

conjugacy class. Examples are given.

1. Introduction. The product of conjugacy classes C\,C2,..., CT of a finite

group G is defined as follows:

Ci ■ C2 ■ ■ ■ Cr = {xix2 ■ • • xr | Xi G Ci, 1 < i < r}.

This product is denoted by Gn if C\ = C2 = • • ■ = Cr = C. For an ordinary

character j? of G we denote the set of irreducible constituents of ê by Irr(t?). The

set of all irreducible characters of G is denoted by Irr(G).

Recently, several results on products of conjugacy classes and similar results on

products of characters have been proved. The book [1] (in particular, the articles

[2 and 3]) and the article [4] contain analogous results on the so-called covering

number and character-covering-number of a finite group. The identity C\C2 —

C\, C2 or C\ U C2 for two nonidentity conjugacy classes Gi, C2 of G, and the

condition Irr(xiX2) Q {xiiX2} for two nonprincipal irreducible characters XiiX2

of G, axe investigated in the forthcoming articles [5 and 10], and an extension of

the character-theoretic results to modular representations is studied in [6].

Our purpose in this paper is to derive the two analogous results stated below.

First we give some notation. The class function i?(n) is defined by ê^n\g) = ,â(gn)

for all g G G, where i? is a class function on G and n is a positive integer. If p is

a prime, |G|P denotes the full power of p which divides \G\. If 7r is a set of primes,

l^k '■— ripgTr l^lp- If » is a positive integer, 7r(n) is the set of prime divisors of

n. If x e Irr(G), Z{x) := {g G G\ \x{g)\ = x(l)} [9, (2.26)], i.e. Z(X) is the set of
elements of G which act as scalars on a module for x-

THEOREM A. (i) Suppose that\ andtp are two irreducible characters of a finite

group G such that xn = kip for some positive integers n,k with n > 2. Then x

vanishes on G — Z(x), ip = X^> k = x(l)n_1 and |G|w(n) divides \Z(x)\-

(ii) Conversely, let G be a finite group and x & Irr(G) such that x vanishes on

G — Z(x)- Ifn is any positive integer such that |G]„.(n) divides \Z(x)\, then xn = k\p

for some positive integer k and %p G Irr(G) (namely, k = x(l)n_1 and ip = x^)-

THEOREM B. (i) Suppose that C\ ^ {1} and C2 are conjugacy classes of a

finite group G such that Cn = C2 for some integer n > 2.  Then there exists some

Received by the editors September 17, 1985.
1980 Mathematics Subject Classification. Primary 20C15, 20D99.

©1986 American Mathematical Society

0002-9939/86 $1.00 + $.25 per page

7



8 H. I. BLAU AND DAVID CHILLAG

N<G and g G G - N such that Ci is the coset gN, and such that the map a>-> an

is a bijection from Ci onto C2.

(ii) Conversely, if a finite group G has a normal subgroup N and an element g

in G — N such that the coset gN is a single G-conjugacy class, and such that for

some integer n the map a i-» an for a G gN is a monomorphism, then gnN is a

G-conjugacy class and (gN)n = gnN.

EXAMPLES. The conditions of Theorem A hold, of course, for any linear char-

acter x of G (and all positive integers n). All finite groups G such that G' < Z(G)

have the property that x vanishes on G - Z(x) for all x e Irr(G) [9, (2.31), (2.30)].

For such groups, the hypotheses of Theorem A(ii) are satisfied for any positive

integer n which is relatively prime to |G|, or, more generally, for which |G|,r(n)

divides |Z(G)|. Groups which have an irreducible faithful character x vanishing on

G — Z(x) are called groups of central type. Such groups were proved to be solvable

in [8]. Examples can be found in [7].

To discuss Theorem B, we note that the following are examples of a group G,

normal subgroup A^ and element goiG—N such that gN is exactly one G-conjugacy

class: (a) G is a Frobenius group with kernel N and cyclic complement (g) ; (b) G is

an extra-special p-group, TV = Z(G), and g is any element of G — N; (c) G = NH,

where H — GLn(q) for some prime power q > 2 and integer n > 2, N is the natural

module for H (elementary abelian of order qn), and g ^ 1 is a scalar matrix in H.

In all three classes of examples, if n is any integer coprime to the order of g, then

the map a i-» an is one-to-one for a G gN. In (a) and (c), there can easily be found

instances where there is an integer n not coprime to the order of g, but for which

a m a™ is again one-to-one for a G gN. For example, let g have order 4 such that

g2 inverts AT. Then a i-+ a2 for a G gN is a monomorphism. Note that in (a) and

(c), gN — {gx | x G N}, but this is not true in (b).
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2. Proofs. We first establish the following lemma, which is a slight refinement

of [9, Exercise (4.7)].

LEMMA. Let x be an ordinary character of a finite group G. Then for every

positive integer n, x^ = i?i — $2 where #¿ is a character of G and Irr(t?¿) Ç Irr(xn)

fori = 1,2.

PROOF. The proof is by induction on n. The result trivially holds for n = 1,

since x^ = 2x — X-
Suppose that n > 1. Then n = mp, where p is a prime divisor of n and m is a

positive integer, m < n. By induction, x^ = Vi ~ V2 where, for i — 1,2, r\i is a

character of G such that Irr(r;¿) Ç Irr(xm). By [9, p. 60], we have

x(n) = (x(-))(p) = nf) _ V(P) = (f?p _ ^i} _ {r)P _ p^a)j

where, for i = 1,2, r?¿ is a character of G afforded by a submodule of a module

affording r¡f. Thus, Irr(r7¿) Ç Irr(r/f).
Set t?i = n\ + pfj2 and #2 = n2 + pfji- Then #1 and ê2 are characters of G

and x^ = t?i — t?2- Since Irr(t?i -I- $2) Ç ^(vï) u I"^?)) '* suffices to show that
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Irr(??f) C lrr(xn) for i = 1,2. But Irr(?7¿) Ç Irr(xm) implies that Uxm = r¡i + pi for

some positive integer U and character pi of G. Then t?xn — (Vi + Pi)p — vf + ri

for a suitable character t¿ of G. Hence, Irr(?7f ) Ç Irr(x") as desired.

PROOF OF THEOREM A(i). Assume that x,^ e Irr(G) and xn = *V> for

some positive integers n,k with n > 2. By the lemma, x^n' = $i — $2 where

Irr(#i) U Irr(i?2) Q Irr(xn) = {V'}- Therefore, t?i = kiib and #2 = k2ib for some

integers fci,/c2. Consequently, x^ = bib for some integer b. As x^(l) = xW —

bib(\), we conclude that 6 > 0 and that x^ is a character of G. Since x" = kip

and x^ = W', it follows that, for any g G G, xn(g) = (k/b)x^nHg)- Evaluation at

9 = 1 yields k/b = x(l)n_1, so that

(1) xn = x(i)n-Vn)-

It follows from (1) that for any g G G, \x(g)\ = x(l) if and only if |x(<7n)l = x(l)-
Hence,

(2) geZ(X)    if and only if   gn G Z(X).

Next, we will show that

(3) X vanishes on G — Z(x)-

Let h G G - Z(x). By (2) we obtain hn' G G - Z(x) for each integer i > 0, so

that \x(hni)\ < x(l). Suppose that X(h) ¿ 0. Then by (1), x(hn<) ¿ 0 for all i > 0.
It also follows from (1) that

|x(ÓI = IxUVxCÓr1 lx(^i+1)l > \x(hni+l)\.

(Here is where the assumption n > 2 is used.) This implies that {|x(/i™')| |î > 0}

is infinite, a contradiction which establishes (3).

From (2) and (3) we obtain \x(g)\ = \x(gn)\ = lx(n)(ff)l for all g G G. Then by
the First Orthogonality Relation, [x^n\x^] = box] = 1- Hence x^ is irreducible

and equals ip.

Finally, let -k — 7r(n) and suppose that |G/Z(x)U ^ 1. Let gZ(x) be a non-

identity 7r-element of G/Z(x)- Then gn' G Z(x) for some positive integer j. So

g G Z(x), be repeated application of (2), which is a contradiction. Therefore, \G\V

divides \Z(x)\ and (i) is proved.

PROOF OF THEOREM A(ii). Assume that xelrr(G), x vanishes on G -Z(x),
and n is a positive integer such that |G|wn) divides |Z(x)|- Let g G G be such

that gn G Z(x)- Then g G Z(x), for otherwise G/Z(x) would contain a n(n)-

element. Hence, for every g G G we have that g G Z(x) if and only if gn G Z(x)-

So our assumption that x vanishes on G — Z(x) trivially implies that xn(g) =

x(l)n_1X^nH?) = 0 for all j ^ Z(x)- Since Xz(x) — x(l)A f°r some linear character

A of Z(x), we get that for each g G Z(x),

Xn(ff)=x(l)nA(ff)n = x(l)n-1X(n)(ff)-

Therefore, xn = x(l)n_1X(n)- Now \X(g)\ = |x(n)(ff)l (= 0 or x(l)) for all g G G,

and thus [x^>X^] = 1- Hence (as x^ is always an integral combination of

irreducible characters), x^ £ Irr(G).

PROOF OF THEOREM B(i). Suppose that GJ1 = G2 for conjugacy classes Gi ¿
{1}, C2 of G, and integer n > 2. Fix some g G Ci. Write Gi = {g,gh2,...,ghk}
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where N := {hi — 1, h2,..., hk} is a suitable set of fc distinct elements of G, i.e.

Ci = gN. For each 1 < i < fc, gn~lghi = gnhi G G? = G2, so C2 2 gnN. Since

CG(g) < CG(gn), g G Ci and gn G C2, we have that |G2| < \d\ = \N\ = \gnN\.
Hence, G2 = gnN and |Gi| = \C2\. Since {an\a G Ci} is a conjugacy class (namely,

G2), it follows that the map a m a" is a bijection from Gi onto G2. We complete

the proof by showing that TV is a normal subgroup and g £ N:

For any 1 < i,j < fc, gnh9hj = gn~2ghighj G Cn — C2 (note n > 2), and hence

gnhfhj = gnht for some 1 < Jt < fc. Therefore,

(4) hfhjGN   far au 1 < t,3 < k.

In particular, letting j' = 1 yields that g stabilizes N under conjugation. Thus any

hr in N equals h? for some ». So by (4), hrhj G N (or all r,j, i.e. TV is a subgroup.

For any y G G, gy = gh for some h G N and

gN = Ci = C\ = gyNy = ghNy.

So Ny = h_1N = N, hence N is normal in G. If g G N, then g-1 G N would

imply that Ci contains gg~l = 1, which is a contradiction.

PROOF OF THEOREM B(ii). Suppose that N < G, g G G - N, gN = Ci is a
conjugacy class of G, and a >-> a™ is one-to-one for all a 6 gN. Now G2 := {an\a 6

Gi} is a conjugacy class of G and C2 C Cf = gnN. Since |G2| = \gN\ = \gnN\ by
hypothesis, we have that G2 = G™.
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