LIMIT BOUNDARY VALUE PROBLEMS OF RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

CHEN SHAOZHU

ABSTRACT. We establish necessary and sufficient conditions assuring the existence and uniqueness of solutions of the limit boundary value problems on a half-line $[a, \infty)$ for the retarded functional equation

$$\ddot{x}(t) + f(t, x(g_1(t)), \ldots, x(g_m(t)))h(\dot{x}(t)) = 0.$$

1. Introduction. We consider the retarded functional differential equation

(E)
$$\ddot{x}(t) + f(t, x(g_1(t)), \dots, x(g_m(t)))h(\dot{x}(t)) = 0,$$

where

(i) $f: [t_0, \infty) \times (0, \infty)^m \to [0, \infty), t_0 \in \mathbb{R} = (-\infty, \infty)$, is a continuous function satisfying $f(t, u_1, \ldots, u_m) \ge f(t, v_1, \ldots, v_m)$ for any $t \ge t_0$ and $u_j, v_j \in (0, \infty), u_j \le v_j, j = 1, \ldots, m$;

(ii) h: $R \to (0, \infty)$ is a continuous function;

(iii) $g_j: [t_0, \infty) \to R$ are continuous functions with $g_j(t) \le t$ and $g_j(t) \to \infty$ as $t \to \infty$, j = 1, ..., m;

(iv) $\int_0^\infty ds / h(s) = \infty$.

For any $\sigma \ge t_0$, define

$$r(\sigma) = \sigma - \min_{s \ge \sigma, 1 \le j \le m} g_j(s) \text{ and } C_{\sigma} = C([-r(\sigma), 0], (0, \infty))$$

 $(C_{\sigma} = (0, \infty) \text{ for } r(\sigma) = 0)$. We suppose for any $\phi \in C_{\sigma}$ and $\beta \in R$ the solution of the initial value problem (E),

(1)
$$x(t) = \phi(t - \sigma), \quad \sigma - r(\sigma) \leq t \leq \sigma$$

and

(2)
$$\dot{x}(\sigma) = \beta$$
,

uniquely exists on some interval $[\sigma - r(\sigma), \omega)$, where $\sigma < \omega \leq \infty$ and $[\sigma - r(\sigma), \omega)$ is the maximal interval of the existence for this solution. Thus, it is well known that the solution is continuously dependent on the initial data. If $\omega = \infty$, then the solution is called a proper solution of (E). If $\omega < \infty$, then the solution is called a nonproper solution.

©1986 American Mathematical Society 0002-9939/86 \$1.00 + \$.25 per page

Received by the editors December 19, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 34K10.

Key words and phrases. Limit boundary value problems, retarded equations, necessary and sufficient conditions.

Let x(t) be a proper solution on $[\sigma - r(\sigma), \infty)$, $\sigma \ge t_0$, and $x(\infty) = \lim_{t \to \infty} x(t)$, $\dot{x}(\infty) = \lim_{t \to \infty} \dot{x}(t)$. Since $0 \le \dot{x}(\infty) < \infty$ and $0 < x(\infty) \le \infty$, we see that either (A) $\dot{x}(\infty) = \lambda > 0$, $x(\infty) = \infty$;

- (B) $\dot{x}(\infty) = 0$, $x(\infty) = \text{const} > 0$; or
- (C) $\dot{x}(\infty) = 0$, $x(\infty) = \infty$.

For any $\sigma \ge t_0$, $\phi \in C_{\sigma}$, and $\lambda > 0$, we shall give the necessary and sufficient condition of the existence and uniqueness for a solution of each of the following limit boundary value problems (LBVPs): (E)(1)(A), (E)(1)(B), and (E)(1)(C). All these conditions are of integral type and easy to verify. The first integral condition which is necessary and sufficient for a nonlinear second-order ordinary differential equation to have a nonoscillatory solution was obtained by F. V. Atkinson in [1]. There are a number of papers concerned with the boundary value problems on a half-line $[t_0, \infty)$ for ordinary differential equations [2–5]. Taliaferro [6] studied positive proper solutions of the differential equation

$$y'' + \phi(t) y^{-\lambda} = 0, \qquad \lambda > 0,$$

derived from the boundary layer equations. However, the limit boundary value problems of functional differential equations have rarely been studied.

We need the following lemma.

LEMMA. For any $\sigma \ge t_0$, $\phi \in C_{\sigma}$, $\beta_1 < \beta_2$, let $x_1(t)$ and $x_2(t)$ be the solutions of the problems (E)(1)(2) with $\beta = \beta_1$ and β_2 in (2) respectively. Suppose both $x_1(t)$ and $x_2(t)$ exist on the same interval $[\sigma - r(\sigma), \omega), \omega > \sigma$. Then we have

- (3) $x_1(t) < x_2(t), \quad \sigma < t < \omega,$
- (4) $\dot{x}_1(t) < \dot{x}_2(t), \quad \sigma \leq t < \omega,$

and, in case $\omega = \infty$, (5)

PROOF. For $\sigma \leq t < \omega$, from (E) we have

$$\int_{\dot{x}_1(t)}^{\dot{x}_2(t)} \frac{ds}{h(s)} = \int_{\beta_1}^{\beta_2} \frac{ds}{h(s)} + \int_{\sigma}^{t} \left[f(s, x_1(g_1(s)), \dots, x_1(g_m(s))) - f(s, x_2(g_1(s)), \dots, x_2(g_m(s))) \right] ds.$$

 $\dot{x}_1(\infty) < \dot{x}_2(\infty).$

Inequalities (3)–(5) are now immediate.

2. Main results.

THEOREM 1. For any $\sigma \ge t_0$, $\phi \in C_{\sigma}$, and $\lambda > 0$, there is a unique solution of the LBVP (E)(1)(A) if and only if for any $\varepsilon > 0$,

(6)
$$\int^{\infty} f(t, (\lambda + \varepsilon)g_1(t), \dots, (\lambda + \varepsilon)g_m(t)) dt < \infty.$$

PROOF. Necessity. Let x(t) be the solution of the LBVP (E)(1)(A). Since $\dot{x}(\infty) = \lambda$, there is a $t_1 \ge \sigma$ such that

$$\int_{t}^{\infty} f(s, x(g_1(s)), \dots, x(g_m(s))) h(\dot{x}(s)) \, ds < \frac{1}{2}\epsilon$$

for $t \ge t_1$. If

$$t_2 = \max\left\{t_1, \frac{2}{\epsilon}\left[x(t_1) - \left(\lambda + \frac{1}{2}\epsilon\right)t_1\right]\right\},\$$

then $x(t) \leq (\lambda + \varepsilon)t$ for $t \geq t_2$. Let $\mu = \min h(y)$, $\lambda \leq y \leq \lambda + \frac{1}{2}\varepsilon$, and $t_3 \geq t_2$ be such that $g_j(t) > |t_2|$ for $t \geq t_3$, j = 1, ..., m. The monotonicity of the function f leads us to the desired inequalities

$$\int_{t_3}^{\infty} f(t, (\lambda + \varepsilon)g_1(t), \dots, (\lambda + \varepsilon)g_m(t)) dt$$

$$\leq \frac{1}{\mu} \int_{t_3}^{\infty} f(t, x(g_1(t)), \dots, x(g_m(t)))h(\dot{x}(t)) dt < \infty.$$

Sufficiency. Let $x(t, \beta)$ denote the solution of the problem (E)(1)(2), $L = \{\beta \in R: \exists t \ge \sigma \text{ such that } \dot{x}(t, \beta) < 0 \text{ or } \dot{x}(\infty, \beta) < \lambda\}$, and $U = \{\beta \in R: \dot{x}(\infty, \beta) > \lambda\}$. We shall prove both L and U are nonempty open sets.

Obviously, $L \neq \emptyset$. By the Lemma $\beta \in L$ implies $(-\infty, \beta] \subset L$. For any $\beta \in L$, if there is a $t' \ge \sigma$ such that $\dot{x}(t', \beta) < 0$, then, by the continuous dependence of solutions on the initial data, there is a $\beta_1 > \beta$ such that $\dot{x}(t', \beta_1) < 0$. Therefore, $\beta_1 \in L$. If β is such that the limit $\dot{x}(\infty, \beta) = \lambda_1$ exists and $\lambda_1 < \lambda = \lambda_1 + 3\delta$, then, since there is a $t_4 \ge \sigma$ such that $\dot{x}(t_4, \beta) \le \lambda_1 + \delta$, there is a $\beta_1 > \beta$ such that $\dot{x}(t_4, \beta_1) < \lambda_1 + 2\delta$. The Lemma implies that $x(t, \beta_1)$ is a proper solution and $\dot{x}(\infty, \beta_1) \le \lambda_1 + 2\delta < \lambda$. Again, we obtain $\beta_1 \in L$ and β is an interior point of L. So, L is an open set.

To prove $U \neq \emptyset$, we define a function $\psi(t)$ by

(7)
$$\psi(t) = \phi(t - \sigma), \quad \sigma - r(\sigma) \leq t \leq \sigma,$$
$$= \phi(0) + (\lambda + 1)(t - \sigma), \quad t > \sigma$$

In view of conditions (iv) and (6), we can choose $\beta > 0$ so large that

$$H(\beta) > H(\lambda + 1) + \int_{\sigma}^{\infty} f(s, \psi(g_1(s)), \dots, \psi(g_m(s))) ds,$$

where $H(y) = \int_0^y ds/h(s)$. Let x(t) be the solution of (E)(1)(2). We claim $\dot{x}(t) > \lambda + 1$ for $t \ge \sigma$. If this is not true, then there is a $t_5 > \sigma$ such that $\dot{x}(t) > \lambda + 1$, $\sigma \le t \le t_5$, and $\dot{x}(t_5) = \lambda + 1$. Here we have $x(t) \ge \psi(t)$ for $\sigma \le t \le t_5$ and $x(t) = \psi(t)$ for $\sigma - r(\sigma) \le t \le \sigma$, and

$$H(\dot{x}(t_5)) = H(\beta) - \int_{\sigma}^{t_5} f(s, x(g_1(s)), \dots, x(g_m(s))) ds$$

$$\geq H(\beta) - \int_{\sigma}^{t_5} f(s, \psi(g_1(s)), \dots, \psi(g_m(s))) ds > H(\lambda + 1).$$

This contradicts the definition of t_5 and proves $\beta \in U \neq \emptyset$.

For any $\beta_3 \in U$, by the Lemma we have $[\beta_3, \infty) \subset U$. Suppose $\dot{x}(\infty, \beta_3) = \lambda_3 > \lambda = \lambda_3 + 3\eta$, $\eta > 0$. Choose $t_6 > \sigma$ large enough that

(8)
$$g_j(t) > |(\lambda + 2\eta)\sigma - \phi(0)|/\eta, \qquad j = 1, \ldots, m,$$

for $t \ge t_6$ and

(9)
$$\int_{t_0}^{\infty} f(s, (\lambda + \eta)g_1(s), \dots, (\lambda + \eta)g_m(s)) ds < H(\lambda + 3\eta) - H(\lambda + 2\eta).$$

Since $\dot{x}(t_6, \beta_3) > \lambda_3$, we can find a $\beta_4 < \beta_3$ such that $\dot{x}(t_6, \beta_4) \ge \lambda + 3\eta$. We claim that $\dot{x}(t, \beta_4) > \lambda + 2\eta$ for $t \ge \sigma$; hence, $\beta_4 \in U$. Suppose not. Then there is a $t_7 > t_6$ such that $\dot{x}(t, \beta_4) > \lambda + 2\eta$ for $\sigma \le t < t_7$ and $\dot{x}(t_7, \beta_4) = \lambda + 2\eta$. From (8) we get

(10)
$$x(g_j(t),\beta_4) \ge \phi(0) + (\lambda + 2\eta)(g_j(t) - \sigma)$$
$$\ge (\lambda + \eta)g_j(t), \qquad j = 1, \dots, m,$$

whenever $t_6 \le t \le t_7$. According to (9), (10), and (i) we obtain

$$H(\dot{x}(t_7,\beta_4)) = H(\dot{x}(t_6,\beta_4)) - \int_{t_6}^{t_7} f(s,x(g_1(s),\beta_4),\ldots,x(g_m(s),\beta_4)) ds$$

$$\geq H(\lambda+3\eta) - \int_{t_6}^{t_7} f(s,(\lambda+\eta)g_1(s),\ldots,(\lambda+\eta)g_m(s)) ds$$

$$> H(\lambda+2\eta),$$

which contradicts the definition of t_7 . This shows that $\beta_4 \in U$ and U is an open set.

Finally, the set $B = \{\beta \in R: \dot{x}(\infty, \beta) = \lambda\}$ is nonempty and, by the Lemma, contains only a single point. This completes the proof of Theorem 1.

COROLLARY. For any $\sigma \ge t_0$, $\phi \in C_{\sigma}$, there exists a unique solution of the problem (E)(1) and $\dot{x}(\infty) = 0$ if and only if for any $\varepsilon > 0$,

(11)
$$\int^{\infty} f(t, \varepsilon g_1(t), \dots, \varepsilon g_m(t)) dt < \infty.$$

In fact, the proof may be carried out similarly to that of Theorem 1 except we set $\lambda = 0$ in (6) and $L = \{\beta \in R: \exists t \ge \sigma \text{ such that } \dot{x}(t,\beta) < 0\}$ and $U = \{\beta \in R: \dot{x}(\infty,\beta) > 0\}$ in the sufficiency part of the proof.

EXAMPLE 1. Consider the following equation:

(12)
$$\ddot{x}(t) = -\exp[t - x(t-1)]/(t-1), \quad t \ge 2.$$

Since (6) is valid for $\lambda = 1$ and any $\varepsilon > 0$, by Theorem 1, for any $\sigma \ge 2$, $\phi \in C([-1,0], (0,\infty))$, there exists a unique solution of (12) satisfying $x(t) = \phi(t - \sigma)$, $\sigma - 1 \le t \le \sigma$, $\dot{x}(\infty) = 1$. Note that (6) fails to be valid for $\lambda = 1$ and $\varepsilon = 0$.

EXAMPLE 2. For

(13)
$$\ddot{x}(t) = -[1 + \dot{x}^2(t)]x^{-2}(t - \pi/2)$$

condition (6) is true, but Theorem 1 fails to hold because condition (iv) is false. In fact, for any $\beta \in R$ the solution x(t) of (13) satisfying x(t) = 1, $-\pi/2 \leq t \leq 0$, and $\dot{x}(0) = \beta$ is nonproper, since from (13) we have $\arctan \dot{x}(t) = \arctan \beta - t$ for $0 < t \leq \pi/2$ and $\dot{x}(t)$ vanishes at $t = \arctan \beta$.

THEOREM 2. For any $\sigma \ge t_0$, $\phi \in C_{\sigma}$, there exists a unique solution of the LBVP (E)(1)(B) if and only if for some positive number a,

(14)
$$\int_{t_0}^{\infty} tf(t, a, \ldots, a) dt < \infty.$$

CHEN SHAOZHU

PROOF. Let x(t) be the solution of the LBVP (E)(1)(B), $x(\infty) = a > 0$. Let $\mu = \min h(y), 0 \le y \le \dot{x}(\sigma) = \beta$. We select an $s \ge \sigma$ large enough that $g_j(t) \ge \sigma$ for $t \ge s, j = 1, ..., m$. Then, by condition (i) and the fact that $\phi(0) \le x(t) \le a$ and $0 \le \dot{x}(t) \le \beta$ for all $t \ge \sigma$, (14) may be obtained from the following estimates: $\mu \int_{s}^{\infty} (t - s) f(t, a, ..., a) dt$ $\le \int_{s}^{\infty} (t - s) f(t, x(g_1(t)), ..., x(g_m(t))) h(\dot{x}(t)) dt$

 $= a - x(t) < \infty$. From conditions (i) and (iii), we observe that (14) implies (11). By the Corollary of Theorem 1, there is a unique solution x(t) of (E) satisfying (1) and $\dot{x}(\infty) = 0$. It remains to show that $x(\infty)$ is a finite number. To do this we need only verify that x(t) is bounded since x(t) is increasing for $t \ge \sigma$. If x(t) is unbounded, then $x(\infty) = \infty$ and $x(g_j(t)) \ge a$, j = 1, ..., m, for t large, say, $t \ge t_1 \ge \sigma$. Since $\dot{x}(\infty) = 0$, we have

$$\dot{x}(t) = \int_t^\infty f(s, x(g_1(s)), \dots, x(g_m(s)))h(\dot{x}(s)) \, ds \leq M \int_t^\infty f(s, a, \dots, a) \, ds$$

for $t \ge t_1$, where $M = \max h(y)$, $0 \le y \le \dot{x}(\sigma)$. So, for any t' and t'', $t'' > t' \ge t_1$, we get

$$x(t'') - x(t') = \int_{t'}^{t''} \dot{x}(s) \, ds \leq M \int_{t'}^{\infty} sf(s, a, \dots, a) \, ds.$$

It follows from (14) that $x(\infty)$ is a finite number. Thus we are led to a desired contradiction, which proves the theorem.

THEOREM 3. For any $\sigma \ge t_0$, $\phi \in C_{\sigma}$, there exists a unique solution of the LBVP (E)(1)(C) if and only if for any $\varepsilon > 0$ and a > 0 condition (11) and

(15)
$$\int_{t_0}^{\infty} tf(t, a, \dots, a) dt = \infty$$

are satisfied.

Theorem 3 follows directly from the Corollary of Theorem 1 and Theorem 2.

References

1. F. V. Atkinson, On second-order nonlinear oscillations, Pacific J. Math. 5 (1955), 643-647.

2. J. W. Bebernes and L. K. Jackson, Infinite interval boundary value problems for y'' = f(x, y), Duke Math. J. 34 (1967), 39-47.

3. Liang Zhongchao, The boundary value problems on an infinite interval for nonlinear differential equations of second order, Acta Math. Appl. Sinica 4 (1981), 277–279; MR83c: 34021.

4. K. W. Schrader, Boundary-value problems for second-order ordinary differential equations, J. Differential Equations 3 (1967), 403-413.

5. W. E. Shreve, Boundary value problems for $y'' = f(x, y, \lambda)$ on $[a, \infty)$, SIAM J. Appl. Math. 17 (1969), 84–97.

6. S. Taliaferro, On the positive solutions of $y'' + \phi(t) y^{-\lambda} = 0$, Nonlinear Anal. 2 (1978), 437-446.

DEPARTMENT OF MATHEMATICS, SHANDONG UNIVERSITY, JINAN, SHANDONG, PEOPLE'S REPUBLIC OF CHINA

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA, M5S 1A1 (Current address)