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LIMIT BOUNDARY VALUE PROBLEMS

OF RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

CHEN SHAOZHU

Abstract. We establish necessary and sufficient conditions assuring the existence

and uniqueness of solutions of the limit boundary value problems on a half-line

[a, oo) for the retarded functional equation

*(0+/('.*(a(0).-.*(«-(0))*(*(0)-o.

1. Introduction. We consider the retarded functional differential equation

(E) x(t) +f(t,x(gx(t)),...,x(gm(t)))h(x(t)) = 0,

where

(i) /: [*o> °°) x (0> °°)m "* [0> °°)> i0 g R = (-oo, oo), is a continuous function

satisfying f(t, «,,..., um) > /(/, vx,..., vm) for any t > t0 and up v¿ e (0, oo), u} <

Vj, j = l,...,m;

(ii) h: R —> (0, oo) is a continuous function;

(iii) gf. [r0, oo) -» R are continuous functions with gj{t) < f and gj(t) -* oo as

< -» oo, / = l,...,m;

(W)fZ>ds/h(s)=<x.
For any a > /0, define

r(o) = o-       min      g,(í)    and    Q = C([-r(a),0], (0, oo))
s > a, 1 <y *ï m

(Ca = (0, oo) for r(a) = 0). We suppose for any ^eQ and ß e i? the solution of

the initial value problem (E),

(1) x(i) = 4>(t - a),        a - r(a) < t < a

and

(2) *{o)-ß,

uniquely exists on some interval [a - r(o), u), where a < u < oo and [a - r(a), w)

is the maximal interval of the existence for this solution. Thus, it is well known that

the solution is continuously dependent on the initial data. If co = oo, then the

solution is called a proper solution of (E). If « < oo, then the solution is called a

nonproper solution.
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Let x(0 be a proper solution on [a - r(a), oo), a > t0, and x(oo) = lim,_00.x(f),

x(oo) = lim,^^ x(t). Since 0 < x(oo) < oo and 0 < x(oo) < oo, we see that either

(A) x(oo) = X > 0, x(oo) = oo ;

(B) x(oo) = 0, x(oo) = const > 0; or

(C) x(oo) = 0, x(oo) = oo.

For any a > i0, $ e C„, and X > 0, we shall give the necessary and sufficient

condition of the existence and uniqueness for a solution of each of the following

limit boundary value problems (LBVPs): (E)(1)(A), (E)(1)(B), and (E)(1)(C). All

these conditions are of integral type and easy to verify. The first integral condition

which is necessary and sufficient for a nonlinear second-order ordinary differential

equation to have a nonoscillatory solution was obtained by F. V. Atkinson in [1].

There are a number of papers concerned with the boundary value problems on a

half-line [r0, oo) for ordinary differential equations [2-5]. Taliaferro [6] studied

positive proper solutions of the differential equation

y"+4>(t)y-x = 0,        X>0,

derived from the boundary layer equations. However, the limit boundary value

problems of functional differential equations have rarely been studied.

We need the following lemma.

Lemma. For any a > t0, (¡> e Ca, ßx < ß2, let xx(t) and x2(t) be the solutions of

the problems (E)(l)(2) with ß = ßx and ß2 in (2) respectively. Suppose both xx(t) and

x2{t) exist on the same interval [a — r(a), <o), w > a. Then we have

(3) X1(t)<x2(t),        a<t<u,

(4) xx(t)<x2(t),        a^t<u,

and, in case w = oo,

(5) x,(oo) <x2(oo).

Proof. For a < / < w, from (E) we have

rx2(i)    ds        rfo    ds

4(0  h(s)    hi  h(s)

+ f'[f(s,xx(gx(s)),...,xx(gm(s)))-f(s,x2(gx(s)),...,x2(gm(s)))]ds.
Ja

Inequalities (3)-(5) are now immediate.

2. Main results.

Theorem 1. For any a > t0, </> G C„, and X > 0, there is a unique solution of the

LBVP (E)(1)(A) if and only if for any e > 0,

/OO
f(t,(X + e)gx(t),...,(X + E)gm(t))dt<œ.

Proof. Necessity. Let x(f ) be the solution of the LBVP (E)(1)(A). Since x(oo) = A,

there is a tx > a such that

j"00 f(s,x(gx(s)),...,x(gm(s)))h(x(s))ds <-e
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for t > tx. If

t2 = max{tx,i[x(tx) -(X + ^e)tx]),

then x(t) < (X + e)/ for t > i2. Let n = min /?(>>)> X < y < X + |e, and i3 > ?2 De

such that gy(r) > |i2| f°r t > t3, j = 1,..., m. The monotonicity of the function /

leads us to the desired inequalities

/oo f(t,(X + e)gx(t),...,(X + e)gm(t))dt
'3

< -/    f(t,x(gx(t)),...,x(gm(t)))h(x(t))dt < 00.

Sufficiency. Let x(f, ß) denote the solution of the problem (E)(l)(2), L = [ß g R:

3t > a such that x(t,ß) < 0 or x(oo,ß) < X), and [/ = [ß g ä: x(oo,/?) > X}.

We shall prove both L and U are nonempty open sets.

Obviously, L 4> 0. By the Lemma j3ei implies (-oo, ß] c L. For any /? G L, if

there is a t' > a such that x(t',ß) < 0, then, by the continuous dependence of

solutions on the initial data, there is a ßx > ß such that x(t',ßx) < 0. Therefore,

ßx s L. If ß is such that the limit x(oo, ß) = Xx exists and Xx < X = Xx + 38, then,

since there is a t4> a such that x(t4,ß) < X, + S, there is a /?, > ß such that

x(r4, ßx) < X, + 23. The Lemma implies that x(t,ßx) is a proper solution and

x(oo,/?,) < Xj + 2ô < X. Again, we obtain ßx G L and /? is an interior point of L.

So, L is an open set.

To prove U ^ 0, we define a function tp(t) by

(7) *(0 = *(/-*),        a - r(a) < í < a,

= <J>(0) +(X+ l)(t - a),        í > a.

In view of conditions (iv) and (6), we can choose ß > 0 so large that

/•OO

#(0) > H(X + 1) + /   /(5,^(A(i)),...,^(gm(i)))<fc,
•'a

where //(.y) = ¡$ds/h(s). Let x(i) be the solution of (E)(l)(2). We claim x(t) > X

+ 1 for / > a. If this is not true, then there is a t5 > a such that x(t) > X + 1,

a < t < r5, and x(t5) = X + 1. Here we have x(t) ^ \p(t) for a < t < i5 and

x(r) = »//(0 for a - r(a) < í < a, and

tf(x(/5)) = //(/?)-/V(*,*(gi(*)),---,*(gJ*)))*

> H(ß) - f'if(s,^(gx(s)),...,rp(gm(s)))ds > H(X + 1).

This contradicts the definition of i5 and proves ß g U ¥= 0.

For any ß3 g {/, by the Lemma we have [ß3, oo) C Í7. Suppose x(oo, ß3) = X3 >

X = X3 + 3tj, tj > 0. Choose t6> a large enough that

(8) g,-(0>l(* + 27j)o-*(0)|/î|,        j=l,...,m,

for / > t6 and

/oo /(s,(X + V)gx(s),...,(X + n)gm(s))ds< H(X + 3t,) - H(X + 2r¡).
■0



LIMIT BOUNDARY VALUE PROBLEMS 49

Since x(/6, ß3) > X3, we can find a ß4 < ß3 such that x(t6, ß4) > X + 3tj. We claim

that x(i, ß4) > X + 2i\ for t > a; hence, ß4 g U. Suppose not. Then there is a

/7 > t6 such that x(t,ß4) > X + 2r¡ for a < t < t7 and x(t7,ß4) = X + 2tj. From

(8) we get

(10) x{gj(t),ß4) > *(0) +(A + 2r,)(gy(/) - a)

>(* + v)gj(t)>        j=l,...,m,

whenever t6 < t < i7. According to (9), (10), and (i) we obtain

H(x(t7,ß4)) = H(x(t6,ß4)) - fhf(s,x(gx(s),ß4),...,x(gm(s),ß4))ds

> H(X + 3t,) - fhf(s,(X + n)gx(s),...,(X + v)gm(s))ds

>H(X + 2v),

which contradicts the definition of 17. This shows that ß4 g U and U is an open set.

Finally, the set B = {ß ^ R: x(oo,/?) = X} is nonempty and, by the Lemma,

contains only a single point. This completes the proof of Theorem 1.

Corollary. For any a > r0, </> G C„, there exists a unique solution of the problem

(E)(1) and x(oo) = 0 if and only if for any e > 0,

/oo f(t,egx(t),...,egjt))dt< oo.

In fact, the proof may be carried out similarly to that of Theorem 1 except we set

X = 0 in (6) and L = {ß G R: 3í 3* a such that x(t,ß) < 0} and U = [ß g R:

x(oo,/})>0}in the sufficiency part of the proof.

Example 1. Consider the following equation:

(12) x(t) =-exp[t - x(t - l)]/(t - I),       t>2.

Since (6) is valid for X = 1 and any e > 0, by Theorem 1, for any a > 2, <j> e

C([-1,0], (0, oo)), there exists a unique solution of (12) satisfying x(t) = </>(i - a),

a - 1 < / < a, x(oo) = 1. Note that (6) fails to be valid for X = 1 and e = 0.

Example 2. For

(13) jc(í) = -[l + x2(i)]x"2(r- 77/2)

condition (6) is true, but Theorem 1 fails to hold because condition (iv) is false. In

fact, for any ß g R the solution x(t) of (13) satisfying x(t) = 1, -7r/2 < t < 0, and

x(0) = ß is nonproper, since from (13) we have arctanx(r) = arctan/? - t for

0 < t < tt/2 and x(/) vanishes at t = arctan/?.

Theorem 2. For any a > t0, <j> G Ca, there exists a unique solution of the LBVP

(E)(1)(B) if and only if for some positive number a,

/oo tf(t,a,...,a)dt < oo.
'0
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Proof. Let x(t) be the solution of the LBVP (E)(1)(B), x(oo) = a > 0. Let

ju. = min h(y), 0 < y < x(a) = ß. We select ans^a large enough that g-(f) > a

for t > s, j = l,...,m. Then, by condition (i) and the fact that <f>(0)<x(i)<a

and 0 < x(/) < ß for all t > a, (14) may be obtained from the following estimates:

/oo (t - s)f(t,a,...,a)dt

/OO

(t-s)f(t,x(gx(t)),...,x(gjt)))h(x(t)) dr

= a — x(t) < oo.

From conditions (i) and (iii), we observe that (14) implies (11). By the Corollary of

Theorem 1, there is a unique solution x(t) of (E) satisfying (1) and x(oo) = 0. It

remains to show that x(oo) is a finite number. To do this we need only verify that

x(/) is bounded since x(t) is increasing for t > a. If x(t) is unbounded, then

x(oo) = oo and x(gy(i)) > a, j=l,...,m, for t large, say, / > tx > a. Since

x(oo) = 0, we have

/OO /-OOf(s,x{gx(s)),...,x(gm(s)))h(x(s))ds<M      f(s,a,...,a)
"t

ds

for t > ?,, where M = max h(y), 0 < y < x(a). So, for any t' and t", t" > t' > ?,,

we get

/r" I*00x(s)ds^M       sf(s,a,...,a)ds.
.' •'/'

It follows from (14) that x(oo) is a finite number. Thus we are led to a desired

contradiction, which proves the theorem.

Theorem 3. For any a > t0, <b g Ca, there exists a unique solution of the LBVP

(E)(1)(C) if and only if for any e > 0 and a > 0 condition (11) and

/oo tf(t,a,...,a)dt = oo
•0

are satisfied.

Theorem 3 follows directly from the Corollary of Theorem 1 and Theorem 2.
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