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ON THE TWO-VARIABLE CONWAY POTENTIAL FUNCTION

MARK E. KIDWELL

ABSTRACT. The Conway potential function V(r, s) of a link with one un-

knotted component labeled s and all other components labeled r can be com-

puted recursively using the first two Conway identities. V(r, s) can be written

uniquely as a polynomial in z\ = r — r , 22 = s — s-1, and the first power

of 2i2 = rs + r~1s~1.

Conway's fundamental announcement [C] has led to considerable work [B-M,

G, H, Ki, K2] on the potential function of a knot or link. Most of this work

except [H] has dealt with the one-variable potential function V(z), a normalized

and specialized form of the reduced Alexander polynomial. An attractive feature

of V(z) is that it may be computed recursively using Conway's first identity (1.1)

and the fact that V(z) = \/z for the unknot. According to [B-M], V(z) may even

be defined recursively.

Conway's first identity (a result actually known to Alexander [A, pp. 301-302])

cannot be applied to a crossing of a link projection in which the two strands have

distinct labels. Distinct labels lead to a potential function with more than one

variable. Hartley [H] asks whether the several-variable potential function can be

computed recursively and gives a positive answer for two-bridge links. Kauffman

[K2, p. Ill] also asks how may "generators of the polychrome skein" are required

to compute the several-variable potential function recursively.

In this paper, we show how to compute recursively the two-variable potential

function V(r,s) of a link having one component unknotted and labeled s and all

other components labeled r. Since a two-bridge link consists of two unknotted

components, our result generalizes that of Hartley. To start, we must know the

potential functions of the unknot, split links, and Hopf links.

Our main tool is Conway's second identity (1.2(a), (b)), which can be used on

tangles with two distinct labels and which respects the integrity of link components

as Conway's first identity does not. We shall also need the formula for the potential

function of the connected sum of two links. Conway's first identity will do its share

of the work in simplifying the r-components of the link.

This paper is written with the expectation that a Jones-type polynomial [F,

J] P(x, y, Zi,z2,...) which distinguishes individual link components will soon be

defined. If, as seems likely, P(x, y, z%, z2,...) satisfies a linear identity involving the

same three links as Conway's second identity, the arguments of this paper will hold

equally well for it.
Hugh Morton [M], while proving a reversal result for the Jones polynomial,

uses an argument quite similar to ours in its sequence of steps. Our efforts were

completely independent.
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It has become popular in papers dealing with the one-variable Conway potential

function to replace the variable {i} = t — t~x with z. In §2, we indicate the

somewhat more complicated procedure required to put the two-variable potential

function in "positive exponent" form.

1. Recursive computation of the potential function. In this paper, a knot

is regarded as a special kind of link. Following Conway and Hartley, we consider

the potential function of a knot to have the form

oi(t2 + r2) +(ao + an(t2n + t-2n))/(t-t-x).

We consider links to be embedded in R3.   As in [C], each component of a link

carries a (not necessarily distinct) label.

(a) I. = 1
J

(b) S.L:   I.
J J

1 (c) E.   L
J

Figure l

In order to apply Conway's identities, we must consider regular projections P(L)

of the link L onto a plane. The crossings (double points) of these projections will

be called pure if both strands of the crossing have the same label and mixed if they

have distinct labels.

Conway's first identity involves a given link L and two links SjL and EjL (the

j'th surgery and elimination, in the language of [B-M]) which differ from L only in

a neighborhood of a pure crossing Vj in P(L). The relevant portions of the three

links are displayed in Figure 1. Let Ij be a crossing index ±1 which is opposite for

L and SjL. The first identity relates the potential functions of these three links as

(1.1) V(fi) - V(S3L) = I,(L)(r - r-l)V(EjL).

Most proofs of this identity have been given for the one-variable potential function,

but they apply equally well to the several-variable case provided Vj is a pure cross-

ing. In at least one of the three links, one inevitably has two distinct components

with the same label, however.

Conway's second identity may be applied when a link projection P(L) has a

region Rk in its plane complement bounded by two edges and two mixed crossings

of the same index. Such a configuration will be called a clasp. There are two cases,

illustrated in Figures 2(a) and 2(d), depending on whether the boundary of Rk is

consistently oriented. The double surgery Skk switches the index of both crossings.

The double elimination Ekk gets rid of both crossings as shown in Figures 2(c) and

2(f). In the case of Figures 2(a)-(c),

(1.2(a)) V(L) + V(SkkL) = (rs + r-xs-x)V(EkkL).

In the case of Figures 2(d)-(f),

(1.2(b)) V(L) + V(SkkL) = (rs~x + r-xs)V(EkkL).
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Figure 2

Conway's second identity may also be used when the crossings of a clasp are pure

(simply identify r and s), but it is then a simple consequence of the first identity.

The following recursive definition is meant to capture the notion that L can

be reduced to the simplest links by a sequence of single and double surgeries and

eliminations and by factoring connected sums.

DEFINITION 1. A link L in R3 is good if it meets at least one of the following

criteria:

(a) The unknot, all split links, and the Hopf links (the simplest links of linking

number ±1) are good. (They may be labeled arbitrarily.)

(b) The connected sum of two good links is good.

(c) If L has a projection P with a pure crossing Vj such that SjL and EjL are

good, then L is good.

(d) If L has a projection P with a clasp Rk such that SkkL and EkkL are good,

then L is good.

Definition 1(a) implies that any link having a projection with at most two cross-

ings is good. The potential function of the unknot is l/(i — i_1), the potential

function of any split link is 0, and the potential function of the Hopf links is ±1

(the same as their linking number). If the two factors Li and L2 of a connected

sum are joined together along a component labeled r, then

(1.3) V(L) = V(L1)(r-r-1)V(L2)

[C, p. 338]. As indicated by Conway and worked out in detail in [B-M and K2],

any link in which all components have the same label is good.

For the rest of this section, we assume that our link L has an unknotted compo-

nent La labeled s. All other components are labeled r and are known collectively

as Lr. We assume that L3 is a geometric circle in the plane R2 x {0}. All our

projections will be regular projections onto that plane. Thus P(LS) = Ls. The two

open regions of R2 x {0} — Ls will be called Int and Ext in the obvious fashion. All

our projections will be drawn from the positive-z direction, and Ls will be oriented

clockwise in them.

LEMMA 1. There is 0 projection P of L with P(Lr) Hint consisting of a union

of disjoint line segments, each undercrossing Ls at one end and overcrossing at the

other.
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FIGURE 4(b)

PROOF. Consider the planar graph Ls U (P(Lr) D Int). If this graph is not

connected (Figure 3), remove any "islands" from Int to Ext. If there are any vertices

remaining in Int, they are connected to Ls by a path in the graph, and at least

one vertex is only a single edge away from La. This vertex v can be removed from

Int as shown in Figure 4(a) or (b). Repeat this procedure until all internal vertices

have been removed. If any of the remaining segments of P(Lr) (1 Int overcross or

undercross La at each end, they may be removed from Int as shown in Figure 5.    D
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Figure 7

Each of the remaining segments in P(Lr) D Int divides Int into two subdisks.

If one of these subdisks contains no other r-segments, then there is a clasp with

boundary edges the given segment of P(Lr) and a segment of Ls. There must be at

least two such clasps in any projection satisfying Lemma 1, unless P(Lr) flint = 0.

LEMMA 2. There is a projection of L satisfying Lemma 1 in which every seg-

ment of P(Lr) n Int is part of the boundary of a clasp.

PROOF. The technique for changing a nonclasping segment to a clasping segment

is shown in Figure 6. The property of undercrossing Ls at one end and overcrossing

at the other is preserved.    D
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W    L (b)    SkkL (c)     EkkL

Figure 8

Let there be n clasps in the projection of L that we have now reached. If n > 2,

Ls U (P(Lr) flint) consists of one 2n-sided "middle" as well as the n clasps. Figure

7 shows that the orientation of a segment of P(Lr) n Int can be reversed without

otherwise changing the projection inside Int. Henceforth we will assume that all

edges around the "middle" are oriented clockwise. An arbitrary clasp is labeled

number 1, and its two crossings labeled 1¡ (for incoming) and 10 (for outgoing). The

crossing points along Ls are then labeled, in clockwise order, 1¡, 10,2¡, 20,..., n¡, n0.

Let us call a projection of L clasped if it satisfies all the conditions that we have

proved possible thus far. Among all clasped projections of L, select one in which

(a) the number n(L) of clasps is minimal,

(b) the number m(L) of pure (r-over-r) crossings is minimal, consistent with (a).

LEMMA 3.   If n(L) = 0 or 1, then L is a good link.

PROOF. If n(L) — 0, then L is a split link, hence good by Definition 1(a). If

n(L) = 1, then L is the connected sum of a Hopf link and a link with all labels r.

Since both of its factors are good, L is good by Definition 1(b).    □

LEMMA 4.   If n(L) > 2 and m(L) = 0, then L is a good link.

PROOF. By Lemma 3 and induction, assume that all links with clasp number

smaller than n(L) are good. Since m(L) — 0, Ext resembles Int after Lemma 1 was

applied but before Lemma 2 was applied. As observed there, Ext contains at least

two clasps. Figure 8(a) shows one of these exterior clasps together with its two

neighboring interior clasps. (The situation must be as in Figure 8(a) or its mirror

image, since we are assuming that n(L) is minimal.) If k is one of the pictured

clasps, then the links SkkL and EkkL of Figures 8(b) and (c) have smaller clasp

numbers than L, hence are good. By Definition 1(d), L is also good.    D

THEOREM 1. Any link L with one unknotted component labeled s and all other

components labeled r is good.

PROOF. Assume L has been given a clasped projection with minimal n(L) and

m(L). By Lemmas 3 and 4 and induction, assume that any such link with smaller

n or smaller m and equal n is good.

Let k be the segment of Lr that originates at 10 and terminates when it reenters

Int. Let this reentry crossing be called j\. Note that j\ = 1¡ is possible. Let the

pure crossings along k in which only one segment is part of k be labeled in order

fci,..., kr. Figure 9(a) shows a typical situation. (The reader is to imagine that

m(L) is minimal.)

As in [B-M], we now perform a surgery and elimination at any crossing fc¡ in

which k is the overcrossing segment. (These crossings are circled in Figure 9(a).)

By induction on m(L), the links produced by elimination during this process will all

be good. Let SL be the link obtained by performing surgeries at all the necessary
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Figure 9(a)

FIGURE 9(b) Figure 9(c)

Figure 9(d)

crossings. By possibly multiple application of Definition 1(c), L will be good if and

only if SL is good. Let Sk be the segment of SL corresponding to segment k of

L. By construction, Sk lies below the rest of SLr, and so may be moved to the

position of Figure 9(b).

Assume for the moment that j\ ^ 1¡. By double surgeries and eliminations

on clasps 1 and j as necessary, we obtain a link S"L in which the segment S"k

corresponding to Sk undercrosses at both 10 and j¡ (see Figure 9(c)). The links

obtained by double elimination are good since they have smaller clasp numbers

than L. By Definition 1(d) (applied zero, one or two times), SL is good if and only
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Figure 10

if S"L is good. But as shown in Figure 9(d), S"L has clasp number less than or

equal to n(L) — 2, hence it is good by induction. This is sufficient to make L good.

Now assume that 1¡ = j\. In this case our single surgery procedure produces a

link that is a connected sum of a link with clasp number 1 and a link with clasp

number at most n(L) — 1. Since both factors are good, S(L) and hence L are good

(see Figure 10).    D

2. A notation for the two-variable potential function. According to Con-

way's brace notation, {f(r, s)} = f(r, s) + f(—r~x, —s~x) where / is a two-variable

Laurent polynomial. Use of the brace notation requires care, as the following ob-

servations indicate.

(a) {rn} ¿ {r}n for n > 1 and {rs} ^ {r}{s}.

(b) If 1 is substituted for s in {f(r, s)}, the result is not necessarily {f(r, 1)}. For

example, substituting 1 for s in {rs} = rs + r~xs~x yields r + r~x, which cannot

be written in brace notation.

(c) {r~n} = (-l)"{rn} and {rns~n} = {r""«"}.

According to Conway and Hartley, the potential function V(r, s) is the polyno-

mial A(r2,s2) multiplied by a Laurent monomial r'lls,X2. Thus the parity of the

r-degree and the s-degree of each term in V(r, s) is the same. The parity of the total

degree of each term in V(r, s) and of the degree in each term of V(r, r) is also the
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same. Hartley [H, Theorem 4.7] proves that if c > 2 is the number of components

of the link, then the degree of each term of V(r, r) is even if c is even and odd if c

is odd. The same then applies to the total degree of each term in V(r, s).

The main symmetry property of the potential function [H, Theorem 5.5] is that

(2.1) V(r,S) = (-l)cV(r-1,S"1).

From this and the previous paragraph, we have that if c is even and the coefficient

of rmsn in V(r, s) is A =£ 0, then m + n is even and the coefficient of r~ms~n =

(-r)~m(-s)~n will also be A. If C is odd and the coefficient of rmsn is A ^ 0,

then m + n is odd and the coefficient of r~ms~n = -(-r)~m(—s)~n will be -A.

In either case, the sum of the two symmetrical terms can be written A{rmsn}.

By addition, we have that the set of brace symbols {rmsn} generates all two-

variable potential functions. To move exponents outside of braces as much as

possible, we use two forms of an identity derived from the definition of the brace

notation:

(2.2(a)) {rm+xsn} = {r}{rmsn} + {rm'xsn},

(2.2(b)) {rmsn+x} = {rmsn}{s} + {rmsn-x}.

This identity bears a striking resemblance to Conway's first identity. The proof is

a routine Laurent polynomial manipulation.

The identity (2.2) allows us to reduce (or raise) exponents in {rmsn} until all

terms have exponent zero or one. For example,

{r-xs} = {rs} - {r}{r°s} = {rs} - {r}{s}.

Annoyingly, {r°s0} = 2, but we can generate all two-variable potential functions

from 1, {r}, {s}, and {rs}.

All {rmsn} can be written in terms of the sequence of Fibonacci polynomials

[B] defined by F0(x) = 0, fii(x) = 1, and Fk+i(x) = xFk(x) + Fk-i(x). One form

of the expression is

(2.3)
{rmsn} = Fm({r})Fn({s}){rs} + Fm+i({r})Fn-i({s}) + Fm-i({r})Fn+i({s}).

For k > 0, F_k(x) = (-l)k+xFk(x).

We now introduce the notation {r} = z\, {a} = z2, and {rs} = zi2.

THEOREM 2. Any two-variable potential function V(r, s) can be written uniquely

as

(2.4) fi(zi,z2) + zi2f2(zi,z2),

where /i and f2 are two-variable polynomials, z, = {r}, z2 = {s}, and zi2 = {rs}.

There are links for which f2 is not identically zero.

PROOF. Formula (2.3) shows that {rmsn}, and hence any potential function,

can be written in the form of (2.4).

For uniqueness, it is enough to show that there is no nontrivial identity

/l(«l,«2) + 212/2(21,22) =0.

Suppose there were. Let Az^zÇ be a nontrivial term of largest 21-degree in f2

and, among these, of largest Z2-degree.  If f2 is written as a Laurent polynomial
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in r and s, there will be terms of r-degree m ranging from ±Arms~n to Armsn.

Thus if 212/(21,22) is written as a Laurent polynomial, there will be terms of r-

degree m + 1 ranging from ±Arm+xs~n+x to Arm+Xsn+1. Such an asymmetrical

expression cannot equal — fi(zi,z2).

A consequence of the previous paragraph is that {rs} = zi2 cannot be written as

a polynomial f(zi,z2). Since Conway's 2-component link "4" [C, p. 344] has poten-

tial function {rs}, there are links for which the 212 term cannot be eliminated.    D

The transformation r <-> r~x arises in connection with reversing the orienta-

tion of the r-string(s). So it is perhaps worth noting that under this transfor-

mation, {r} = r — r~x is replaced by r~x — r = —{r} and {rs} is replaced by

{r~1s} = {rs}-{r}{s}. Thus A(21,22)+212/2(21,22) is replaced by (/i(-2i,z2)-

2l22/2(-21,22)) + 2i2/2(-2i,22).
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