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TWO-BRIDGE KNOTS WITH UNKNOTTING NUMBER ONE

TAIZO KANENOBU AND HITOSHI MURAKAMI

ABSTRACT. We determine all two-bridge knots with unknotting number one.

In fact we prove that a two-bridge knot has unknotting number one iff there

exist positive integers p, m, and n such that (m, n) = 1 and Imn = p ±

1, and it is equivalent to S(p, 2n2) in Schubert's notation. It is also shown

that it can be expressed as C(a,01,02,... ,ajt, ±2,—Ofc,...,—02,—ai) using

Conway's notation.

Let if be a knot in a 3-sphere. An unknotting operation is an operation which

changes the overcrossing and the undercrossing at a double point of a diagram of

K. The unknotting number of K, denoted by u(K), is the minimum number of

unknotting operations needed to deform a diagram of K into that of the trivial

knot, where the minimum is taken over all diagrams of K.

By a two-bridge knot S(p,q) we mean a knot which is characterized so that its

double branched covering space is the lens space L(p, q), where p and q are coprime

integers and p is odd and positive [3, 6, 11, 12]. (Thus we regard S(p,q) and its

mirror image S(p,—q) as equivalent.) Let C(ci,c2,... ,cr) be Conway's notation

for a two-bridge knot. If the continued fraction

1 1
ci + -—      —

C2+ • ■ • +Cr

is equal to p/q, then C(ci,C2,... ,cr) is equivalent to S(p,q) [3, 12].

In this paper we consider two-bridge knots with unknotting number one and

determine them. In fact we prove

THEOREM 1. Let K be a nontrivial two-bridge knot. Then the following three

conditions are equivalent.

(i) u(K) = 1.
(ii) There exist an odd integer p (> 1) and coprime, positive integers m and n

with 2mn = p ± 1 and K is equivalent to S(p, 2n2).

(iii) K can be expressed as C(a,ai,a2,... ,ak,±2, —ak,..., —a2, —ai).

To prove the above theorem we use the following theorem due to M. Culler, C.

McA. Gordon, J. Luecke, and P. B. Shalen [4, 5] (see also Theorem A in [13]).

THEOREM 2 [5]. For a knot K, let K(a/b) be a 3-manifold obtained by (a/b)-
Dehn surgery along K, where a and b are coprime integers. If K is not a torus knot

and TTi(K(a/b)) is cyclic, then \b\ < 1.

PROOF OF THEOREM 1. (i)=*>(ii). It is known that if a nontrivial knot K

has unknotting number one then its double branched covering space is K(p/ ± 2)
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Figure l

for some (strongly invertible) knot K and some positive, odd integer p (see [7,

8]). Since the double branched covering space of S(p,q) is the lens space L(p,q),

if u(S(p,q)) — 1 then L(p,q) is obtainable as k(p/ ± 2) for some knot fc. Since

7Ti(L(p, q)) — Z/pZ, fc must be a torus knot from Theorem 2.

Suppose that fc is the (m,n)-torus knot ((m,n) — 1). From [9] if fc(p/ ± 2) is a

lens space, | ± 2mn + p\ = 1 and it is homeomorphic to L(p, 2n2). Thus (ii) follows.

(ii)=i>(iii). First suppose that n — I. Then since S(p, 2) is equivalent to

C((p - l)/2,2), K has the required expression.

Next suppose that n > 1.  Choose integers a {¿fi 0) and í so that an + t — m

and n > \t\ > 0. Note that (n,t) = (n,m) = 1. Then express n/t by a continued

fraction
n 1 1
- = ai -\-.
i a2+ ■ ■ ■ +ak

Now consider continued fractions

/i = o H-    —    t-r—     —t-r    it fc is even
ai+■ ■ ■+ak + 2s + (-ak)+■ ■ ■+(-ai)

and

f2 = a-\-      -—    t——-r-r —-    if fc is odd,
oi+ • • • +ak + (-2e) + (-ak) + ■■■ +(-aj)

where e is chosen so that 2mn = p — e.

It can be shown (using techniques described in [12] for example) that /i = f2 =

{l + 2en(an + t)}/2en2 = p/2n2. Thus S(p,2n2) is equivalent to C(a,ai,a2, ...,ak,

±2, -ak,..., -a2, -ai) in either case, (iii) follows.

(iii)=>(i). See Figure 1. The unknotting operation indicated there shows that

u(K) = 1.
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Figure 2

Corollary 3.
G. B. Briggs [1].

14(83) = 2. Here we use the notation of J.  W. Alexander and

PROOF. 83 is the two-bridge knot 5(17,4). First note that u(83) < 2, as easily

seen from its diagram. Suppose that u(%z) = 1. Since (17 ± l)/2 = 8 (= 23) or 9

(= 32), 5(17,4) must be equivalent to 5(17,2) or 5(17,2 x 82) = 5(17,2 x 92) =
5(17,9). But this is a contradiction since S(p,q) is equivalent to S(p,q') if and

only if ±q = q1 or ±qq' = 1 (modp) [11]. Thus «(83) = 2.

Using the same argument, we can conclude that the unknotting numbers of

84,86,88,8i2,95,98,9i5,9i7, and 931 are all equal to two. (See [10] for a table of

the unknotting numbers of knots with at most nine crossings. Another method to

determine the unknotting numbers can be found in [7].)

The unknotting numbers of 810,816,925,932>9io, 9i3,935,933, and 949 are still

unknown (at least to the authors). The first four knots have unknotting numbers

one or two, and the last five have unknotting numbers two or three.

Finally we give a counterexample to S. A. Bleiler's conjecture. In [2] he conjec-

tured that the unknotting number of a two-bridge knot is realized in the diagram

corresponding to a continued fraction with all coefficients even.

Let us consider the knot 814. It is the two-bridge knot 5(31,18) and has unknot-

ting number one since 31 = 2x3x5+1 and 18 = 2x32. But one can show that any

unknotting operation on its diagram corresponding to C(2, —4,2,2) cannot create

the unknot (see Figure 2).
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