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ON THE EGOROFF PROPERTY OF POINTWISE

CONVERGENT SEQUENCES OF FUNCTIONS

ANDREAS BLASS AND THOMAS JECH

Abstract. The space i?( X) of real-valued functions on X has the Egoroff property

if for any { fnk ) such that 0 < fnk Î k / (for every n ), there exists gm Î / such that,

for each m and n, gm < f„k for some k. We show that ¿f(X) has the Egoroff

property if and only if the cardinality of X is smaller than the minimum cardinality

of an unbounded family of functions from the set of natural numbers to itself.

Therefore, the statement that there is an uncountable set X such that ¿f(X) has the

Egoroff property is independent of the axioms of set theory.

The Egoroff property of function spaces, or more generally of vector lattices, is an

abstract formulation of Egoroff s theorem from measure theory. Let X be a set, and

let ¿f(X) denote the space of all real-valued functions on X. If {fk} is a sequence

in &(X), then

hUf
means that /0 < /, < • • • < fk < • • • , and that {fk} converges pointwise to /.

Following [3, 67.2], we say that -¥(X) has the Egoroff property if the following

holds for any doubly indexed sequence {fnk} in J¡C( X):

If 0 < fnk1 k f for all n, then there exists a sequence ( gm} such that gm T /, and

that for each m and for each n there is k such that gm < f„k.

The Egoroff property of -S?(X) depends only on the cardinality of X. Clearly,

¿¡f(X) has the property if X is finite, and an easy diagonal argument shows that

-¡C(X) has the Egoroff property if X is countable. It is proved in [3] that, if the

continuum hypothesis holds, then ¿£(X) has the Egoroff property only if X is at

most countable. In fact, an argument from [1] shows that if X has the cardinality of

the continuum then £C( X) does not have the Egoroff property.

We show that in the absence of the continuum hypothesis, the space ^C(X) with

X uncountable may or may not have the Egoroff property:

Theorem 1. (a) It is consistent that 2N° > S, and ä?(X) has the Egoroff property

only if X is at most countable.
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(b) // is also consistent that 2N" > S, and for every X of size less than 2S°, ¿¡?(X)

has the Egoroff property.

Theorem 1 will follow from a more precise result characterizing the cardinalities of

the sets X for which £C( X) has the Egoroff property. To state this result, we use the

following terminology and notation, taken from [4]. A family & of functions from

the set co of natural numbers into itself is said to be bounded by a function

g: co -* co if, for each /ej, the inequality f(n) < g(n) holds for all but finitely

many n g co. If no such g exists, J*" is unbounded. The minimum possible

cardinality for an unbounded family is the bounding number, denoted by b. It is

known that b is a regular cardinal, that

«! < b< 2*°,

and that each of the four combinations of equalities and strict inequalities here is

consistent with the axioms of set theory. In particular, models obtained by adding

many random reals to a model of the continuum hypothesis satisfy b = S,, while

models of Martin's axiom satisfy b = 2N"; in both cases, 2*° can be arbitrarily large

[2]. Thus, the following result implies Theorem 1.

Theorem 2. S£(X) has the Egoroff property if and only if the cardinality of X is

smaller than b.

In order to prove Theorem 2, we use a reformulation of the Egoroff property for

2>(X).

Lemma [3, Theorems 75.1 and 73.2]. ¿¡?(X) has the Egoroff property if and only if

the Boolean ring P(X) does (P(X) is the power set of X), and the Egoroff property

for P( X) is equivalent to the following:

Let {Ank} be subsets of X such that, for all n,

00

(*) An0QAnXçz  ■■■  ç  ■•■, \jA„k = A.
k = 0

Then there exists a sequence B0 ç Bx c • •■ ç Bn ç • • • such that U™=0Bn = A,

and for each n, Bn ç Ank for some k.

It is this property (*) that we use in the proof of Theorem 2.

Proof of Theorem 2. "Only if." Assume that £?(X) has the Egoroff property.

We shall show that the cardinality of X is smaller than b by showing that no

X-indexed family of functions co -» co can be unbounded. Let such a family

{fx | x g X} be given, and set

Ank={x^X\fx(n)^k}.

Clearly, for each fixed n, the sequence {Ank }f=0 is increasing and its union is X. As

¿i?(X) has the Egoroff property, the lemma gives us an increasing sequence {£„},

with union X, such that for each n there exists k with Bn ç Ank. Let g: co -* co be a

function assigning to each n such a k; so Bn Q Ang(n). Consider any fixed x g X.

As the £„'s are increasing and have union X, we have x g Bn for all sufficiently
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large n. Thus, for all sufficiently large n,

xe B„çzA,lgin),

so, by definition of Ank,  fx(n) < g(n). Since x g X was arbitrary, the family

{fx | x g X} is bounded by g.

"//." Assume that X has cardinality smaller than b. We show that -£?(X) has the

Egoroff property by verifying the criterion (*) in the lemma. So let Ank% and A be

given, satisfying the hypotheses of (*). For each x G A and each n, let fx(n) be a /c

such that x g Ank. Since /4nA increases with k, we have x g Ank for all /< >/(«).

The family of functions {fx \ x G A} has cardinality no larger than that of X hence

smaller than b. So let g: co -» co bound this family. This means that, for each x g X,

we have fx(n) < g(n) for all sufficiently large n. (The "sufficiently large" can

depend on x.) Therefore, x G An_g{n) for all sufficiently large n. As x is an arbitrary

element of A, the sets

n ^ m

cover A. The sequence {ßOT} is obviously increasing, and Bn Q An  (n). Thus, the

criterion (*) is verified.   D
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