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A STRENGTHENING OF LETH'S UNIQUENESS CONDITION
FOR SEQUENCES

JEROME MALITZ

ABSTRACT. A series 2~2ai °f nonnegative reals summing to 1 such that o¿ <

.     aj for each i is uniquely characterized by the equalities of the form

¿2jai = Eifafc'  This characterization is an improvement of one given by

Leth.

The main purpose of this note is to prove the following sharpened version of a

theorem of S. Leth [2].

THEOREM.   Let (an) and (bn) be sequences of real numbers such that

(i) limn_oo an = limn_oc, bn = 0,

(ii) 0 < an+i < an and 0 < bn+i < bn for all n,

(iii) an < zZj>n ai  and b"- ̂  Ej>n b3 f0r al1 n>

(iv) EyeJ ai - Sfceic ak iff Eíej b¡ ~ EfceK bk f°r aU J and K-
Then there is a constant u such that a¿ = ubi for all i-

In Leth's theorem (iv) is replaced by

(iv)' Eye J ai ^ Efc€/f afe iff EyeJ bo - Efce/c bk for all J and K.
J. Mycielski [3] asked if (iv) suffices. To see that the answer to his qustion is

yes, we need several lemmas. The lemmas and their proofs are variants of those in

[1 and 2]. N is the set of nonnegative integers.

LEMMA 1. Let r < ESia¿ where an+i < an < Ylj>naj for a^ n and

limn_oo an = 0. Then there is some K Ç N such that r = J2k ak-

PROOF. We define K = {kr¡,ki,...} inductively. Let fco be the least j such

that aj < r. If fc¿ is known for i < n and E¿<n afc¿ < r ^ ^n be the leas* J

such that aj + Ei<nafci - r (such a 3 exists since limn_,oo an = 0); otherwise

take K = {fco,... ,fcn-i}- Clearly E/ceirûfc — r% ^° see tna* we cann°t have

EfegK ak < r first note that the definition of K and the assumption limn_00 an = 0

imply K is infinite. By assumption Efceiv ak > r> hence K ^ N and so there is

a greatest / ^ K. But a¡ < Efc>i ak forcing l G K—a contradiction. Therefore

Efeeif ak = r-

LEMMA 2. Under the assumptions of Lemma 1, for every j there is a K Ç

{i: i > j} such that aj — YIk a»- Hence aj = El ai for some infinite L.

PROOF. This follows from Lemma 1 by considering the sequence (aj-f-i-i-t)t^o

and taking r to be a,. Iterating this procedure on the last term of the expansion

as long as the expansion is finite gives the desired infinite expansion.
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LEMMA 3. Under the assumptions of Lemma I, for every J ^ N there is a K

such that 2~2j o-j = Ek ak and N — K is infinite.

PROOF. If N — J is finite with largest member j, let aj — Epa¿ where P is

infinite as in Lemma 2. Now let K be the complement of ((N - J) - {j}) U P.

PROOF OF THE THEOREM. We show that (i)-(iv) imply (iv)'. If not, then

there is a J and an L such that J2l a¡ < Ej aj an(^ El bi ■> Ej bj- Fix J and let

r = sup{^L 6;: J2l a' < Ej ai ana" El &l > Ej bj}- By Lemma 1 there is an M
such that ^2Mbm=r.

We claim that ^Mam < Ej°i- For lßt ^' be a finite initial subset of M.

Take L such that £La; < Ejaj> El bi > Ej bi> and El bi > Ew^»' b^
Lemma 1 (with r = £L 6¡ - £M, &m ̂ d E~ i ak replaced by J2i>k a* where

fc = maxM') there is some M" such that M' Ç M" and Eaí" b™ ~ El ^- Hence

EAf'am < Em"°"i = El°í < Ejaj- Therefore £Ma¡ ^ Ejaj- Equalilty
implies ^M bj = ^j 6j by (iv), so we must have J2m am < Ej aj> as claimed.

By Lemma 3, we may assume that N — M is infinite and since linin-H» an = 0,

there is a j G TV — M such that a, + J2m a™- < Ej aj- ^ut then by + £^M 6m > r
and also bj + J2M bm > Y^,j bj, a contradiction which finishes the proof.
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