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MINIMAL DEGREES OF FAITHFUL CHARACTERS
OF FINITE GROUPS WITH A T.I. SYLOW p-SUBGROUP

T. R. BERGER, P. LANDROCK, AND G. O. MICHLER

ABSTRACT. Using the classification of the finite simple groups we show in this article
that a faithful complex character x of a finite group G with a nonnormal T.I. Sylow
p-subgroup P has degree x(1) > /|P| — 1. This result verifies a conjecture of H. S.
Leonard [10].

Introduction. Let p be a fixed prime, and let G be a finite group with a T.I. Sylow
p-subgroup P. That is, two different conjugates of P have only the identity element
in common. In [10] H. S. Leonard conjectured that if G has a faithful complex
character x with degree x(1) < y|P| — 1, then P is normal in G. Using the
classification of the finite simple groups we prove Leonard’s conjecture in this note
(Theorem 3.2).

In §1 this theorem is first proved for p-solvable groups G (Proposition 1.3). Then
we determine the composition series of a minimal counterexample G to Leonard’s
conjecture (Proposition 1.4). Since by Sibley’s theorem [12] the main result of this
article is known if P is cyclic, we give in §2 a complete list of all finite simple groups
G having a noncyclic T.I. Sylow p-subgroup for some prime p (Proposition 2.3).
Here for odd p we use Gorenstein and Lyons’ theorem [4] classifying all finite
groups G with 0,(G) =1, p-rank m,(G) > 1, and containing a strongly p-em-
bedded subgroup. If p = 2, then Proposition 2.3 is only a restatement of Suzuki’s
theorem [13). After these preparations Leonard’s conjecture is proved in §3. In
Remark 3.3 we show that the bound of Theorem 3.2 cannot be replaced by
$(JP| — 1), which is the bound of Sibley’s theorem [12].

For notation and terminology we refer to the books by Feit [1], Gorenstein [2, 3],
Huppert [S], Huppert and Blackburn [6], and Landrock [9]. All character tables of
finite simple groups used here are contained in the CAS-system [11] of J. Neubuser,
H. Pahlings, and W. Plesken (TH. Aachen, Federal Republic of Germany).

1. Reduction to almost simple groups. In this section we determine the structure of
a finite group G of minimal order among the groups H without a normal Sylow
p-subgroup, but satisfying the hypothesis of Leonard’s conjecture.

The following lemma due to Feit [1, p. 123] is our basic tool.
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LEMMA 1.1. Let S be a splitting field of characteristic zero for the finite group G with
a T.I. Sylow p-subgroup P. Let x be a character of SG such that x(1)* < |P|. Let H
be a subgroup of G containing N;(P). Then (X, x)s = (X> X) n-

For a short proof of this result we refer to [9, p. 129].

LEMMA 1.2. Let G be a finite group with a T.1. Sylow p-subgroup P. Then the
following assertions hold.

(a) Every subgroup U of G with p||U| has a T.1. Sylow p-subgroup.

(b) G/N has a T.I. Sylow p-subgroup for every normal subgroup N of G with
(p,IND=1

(c) C5(x) has a normal Sylow p-subgroup for every 1 # x € P.

PROOF. See Suzuki [13, p. 59].

PROPOSITION 1.3. Let G be a p-solvable group with T.1. Sylow p-subgroup P and a
faithful complex character x such that x(1)? < |P|. Then P is a normal subgroup of G.

PROOF. Let G be a minimal counterexample and let (F = R/7, R, S = quot(R))
be a splitting p-modular system for G (see [9, p. 47]). Then O,(G) =1, and so
Q0 =0,(G)# 1. Let H= QNg(P).If H # G, then P<H by induction. Hence

0,,(H) = 0,(H) X P >0,,(G) > 0,

because G is p-solvable. This forces O,(G) # 1, a contradiction. Therefore, G = H.
But G = O?'(G) by minimality, whence G = QP. In particular, G is p-nilpotent,
and every p-block B of G contains only one modular character by Theorem 14.9 of
[6]. Since P is a T.I. Sylow p-subgroup, and x (1) < |P| it follows from Theorem 14.8
of [6] that (the possibly reducible) x contains an irreducible constituent p. belonging
to a nonprincipal p-block B with defect group 8(B) = ;P, because x is faithful. As
G is p-nilpotent, by Theorem 2.1 of [1, p. 419], we also may assume that p remains
irreducible under restriction modulo 7. Let i be a module over F affording
modulo 7.

Let b be the block of U = Nj;(P) associated with B by the Brauer correspon-
dence. Since p(1)? < |P|, Lemma 1.1 asserts that p|,, is irreducible. Because P is a
T.I. set, Green’s correspondence theorem implies that &|, is an indecomposable
module in b. Notice that b contains only one modular irreducible character, so that
all composition factors of fi|, are isomorphic. In particular, if |, is not irreduci-
ble, it has a nonzero nilpotent FU-endomorphism 7, namely any nonzero map from
the head to the socle of | . As P is a T.I. set, Corollary 5.8 of [9, p. 122], implies
that 7 is a projective endomorphism of j|,. Therefore, u(1)> > |P| by Corollary
6.11 of [9, p. 128], a contradiction. We now know that |, is an irreducible
FU-module of b and that P acts trivially on fi|,. Let 4 = kergg in G. Now 4 # G
since B is not the principal block. We have

P<kerp=A4<G.

Therefore, Q &« A as G = QP.
By Lemma 1.2 P is a T.I. Sylow p-subgroup of 4, and x 4 is a faithful complex
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character of 4 with x 4(1)? < |P|. So P<4 by induction, which implies P<G. This
contradiction completes the proof.
The center of the group G is denoted by Z(G).

PROPOSITION 1.4. Let G be a minimal counterexample to Leonard’s conjecture. Let
P be a T.1. Sylow p-subgroup of G, and let x be a faithful complex character of degree
x(1) < y|P| — 1. Then:

(@) Z(G) = 0,(G) < 0*(G)=H,G = 07 (G).

(b) H/Z(G) is a nonabelian simple group with a T.1. Sylow p-subgroup.

(c) x may be assumed to be irreducible.

PROOF. As G is a minimal counterexample, G = O?(G). Let H = 0”(G), and let
H/N # 1 be a chief factor of G.

Suppose that H/N is a p’-group. By Proposition 1.3 G is not p-solvable. Thus
P,=PNN=+#1,and L = N4z(P,) <G. Since P N N4P, P < L. So by induction
PJL. As G = OP(G), and as G = NL by the Frattini argument, we obtain G = NP,
and so N = H, a contradiction.

Therefore H/N is a direct product of isomorphic nonabelian simple groups A
with p||A|. Hence NN;(P) < G, which implies P<NN;(P) by induction. Since P is
a T.I set in G, we now get O,(N)=NN P =1. S0 N is a p’-group commuting

ith P. H ,
e enee Cs(N) = (P¢|ge G)= 07(G) = G,

and s0 Z(G) = N < 0,(G).

As (p,|N|) = 1, Lemma 1.2 asserts that H/N has a T.I. Sylow p-subgroup. Thus
by Lemma 1.2(c) H/N is simple. Since O,(G)C OF(G)= H, it follows that
N = 0,(G).

Finally, we may replace x by an irreducible constituent, which does not have H in
its kernel. This completes the proof.

2. Simple groups with a noncyclic T.1. Sylow p-subgroup. In this section we list the
simple groups with a noncyclic T.I. Sylow p-subgroup. In [13] Suzuki classified the
simple groups with such a Sylow 2-subgroup. For odd primes p our subsidiary result
follows from Gorenstein and Lyons’ classification [4] of the finite groups G with
0,(G) =1, p-rank m,(G) > 1, and containing a strongly p-embedded subgroup.

Here m ,(G) denotes the maximum rank of an elementary abelian subgroup of a
Sylow p-subgroup P of the finite group G.

DEFINITION [3]. Let P be a Sylow p-subgroup of the finite group G, and let k be a
positive integer. The k-generated p-core of G is I'p ,(G) = (Ns(Q)|Q < P,m,(Q)
= k).

The proper subgroup M of G is called strongly p-embedded in G if I'p ;(G) < M.

REMARK 2.1. If the finite group G contains a nonnormal T.I. Sylow p-subgroup P,
then M = N;(P) is strongly p-embedded in G, as is easily seen.

A finite group G is quasi-simple if G = G’ and G/Z(G) is simple. The layer L(G)
of G is the product of all subnormal quasi-simple subgroups of G, where L(G) =1
if no such subnormal subgroup exists. The generalized Fitting subgroup of the finite
group G is defined as F*(G) = F(G)L(G), where F(G) denotes the Fitting sub-
group of G (see [3, p. 44)).
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In view of the classification theorem of the finite simple groups we now can
restate Theorems (24.1), (24.2), and (24.9) of Gorenstein and Lyons [4, pp. 307, 311,
and 318, respectively], as

PROPOSITION 2.2. Let p be an odd prime, M a strongly p-embedded subgroup of the
finite group G with 0,(G) =1 andm,(G)> 1. Let V = 0”(G) and let P be a Sylow
p-subgroup of M. Then F*(G) = L(V') is simple and one of the following holds.

(1) V = PSL,(p") or PSU;(p"), and M = Ng(P).

QV=%,,and F*(M)=UA, X A,

(3) p = 3,V =2G,(3**!), and M = N;(P), where m > 0.

@) p=3,V=M,orPSL;(4), and M = N;(P).

B)p=5V=MQ22),and VN M= Aut(D,(2)).

(6) p = S, V =2F,(2), Aut(*B,(2°)) or Mc, and M = N;(P).

MHp=11,V=J,, and M = N;(P).

Proor. By hypothesis, I'»,(G) <M # G and P < VN M. Thus 0,(G) =1 =
F(G), because otherwise G = N;(0,(G)) < I'p1(G) < M # G, a contradiction.

Let K be a normal subgroup of G. As O,(G) =1, P, = P N K # 1. The Frattini
argument asserts that G = N;(Py)K. Hence K « I', (G). It follows that every
quasi-simple subnormal subgroup L of G is simple and L # I, (L), where
P, € Syl (L).

Thus F*(G) = L(G) = L(V) is a direct product of simple groups £, 1 < i <k,
each of which contains a strongly p-embedded subgroup.

Let E€ (E|]1<i<k}, P*=PNL(V) and X = EP*. Then O,(X)=1=
0,(X) and Tp.;(X) # X, because P* C I',,(G), but E &« I'p,(G). Applying now
Theorem (24.9)(4) of Gorenstein and Lyons [4, p. 318], we obtain that ,(P*) < E
or E € {G,(3),%By(2%)}. Since P* € Syl (L(V)) it follows that P* < E. As
O0,(L(V)) =1 we get F¥(G) = L(G) = L(V) = E. Hence F*(G) is simple. Now
Theorems (24.1) and (24.2) of Gorenstein and Lyons (4, pp. 307, 311] complete the
proof.

Combining this result with Suzuki’s theorem [13] we obtain

PROPOSITION 2.3. Let G be a nonabelian simple group with a noncyclic T.1. Sylow
p-subgroup P. Then G is isomorphic to one of the following groups.

(a) PSL,(q) or PSU,(q), where g = p" andn > 2 or n > 1, respectively.

(b) p = 2 and G =2B,(22™*").

(c) p = 3 and G =*G,(3*"*"), wherem > 1.

(d) p = 3 and G = PSL,(4) or M,,.

(e) p =5 and G =2F,(2) or Mc.

& p=11land G = J,.

PROOF. If p = 2, then (a) and (b) follow from Theorem 1 of [13].

Let p be odd. By Remark 2.1 G can only be one of the simple L(}') occurring in
the list of Proposition 2.2. Since %, X ¥, is a subgroup of %, ,, Lemma 1.2 asserts
that G # %, ,. A group H with a T.I. Sylow p-subgroup has only p-blocks of defect
zero and of highest defect. By the character table system CAS [11] M(22) has a
5-block of defect one. Thus G % M(22). Since Aut(*B,(2%)) is not simple, G #
Aut(’B,(2%)).
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Now PSL,( p") and PSU,( p") have T.I. Sylow p-subgroups (see [5, pp. 191, 242]).
By Ward [14] 2G,(3*™*1) has a T.I. Sylow 3-subgroup. As can be seen from the
character table of PSL;(4) the Sylow 3-subgroup P equals C;(x) forevery1 # x € P.
Hence P is a T.I. set.

It is well known and easy to check that the Sylow 3-subgroups of M;; and the
Sylow 5-subgroups of the Tits group %F,(2)’ and the McLaughlin group Mc are T.I.
By Propositions 22 and 26 of Janko [7] the Sylow 11-subgroups of J, are T.I. This
completes the proof.

3. Proof of the main result. In this section, Leonard’s conjecture is proved by
means of the results mentioned above.

Let G be a finite group with a Sylow p-subgroup P. If C;(P) = C;(x) for every
1+ x € P, then P is called weakly self-centralizing. The following lemma is well
known.

LemMA 3.1. Let G be a finite group with a cyclic Sylow p-subgroup P. Then P is a
T.I. set if and only if P is weakly self-centralizing.

THEOREM 3.2. Let G be a finite group with a T.1. Sylow p-subgroup P. If G has a
faithful complex character x with degree x(1) < |P| — 1, then P is a normal
subgroup of G.

PROOF. If P is cyclic, then P is weakly self-centralizing. As \/|7| -1<i(PI-1)
for every prime p > 0, it follows from Sibley’s theorem [12] that P<G.

Now let G be a counterexample of minimal order. Then P is not cyclic,
G = 0”(G), and by Proposition 1.4 Z = Z(G) = 0,(G) < O7(G) = H. Further-
more, H/Z is a nonabelian simple group with a T.I. Sylow p-subgroup, and we may
assume that x is irreducible. We also can assume that G does not have a proper
abelian direct factor.

Suppose that p is odd. Then m,(G) > 1, because P is not cyclic. By Remark 2.1
N;(P) is strongly p-embedded in G. Therefore it follows from Propositions 2.2 and
p=23 and G =2G,(3) or 2.3 that H= OP(G)= G except when p =3 and
G =2G,(3) or p =5 and G/Z = Aut(*B,(2°)). Now remembering that p +|Z| and
using Gorenstein’s table [3, Table 4.1, p. 302] of the Schur multipliers of the finite
simple groups, the structure of G can be described as in the following table.

prime p G/Z z

rlq PSL,(q) or PSUs(q) 1Z|<2or|Z| <3
p=3 2G,(33m* 1 Z=1

p=3 PSL,(4) or M, |Z|<d4orZ=1
p=>5 ’F,2y zZ=1

p=>5 Aut(’B,(2°%)) Z=1

p=>5 Mc 1Z| <3

p=11 Jy Z=1
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Applying the theorem of Landazuri and Seitz [8] on the minimal degrees of the
nontrivial complex projective representations 7 of PSL,(g), PSU,(gq), or 2G,(32"*1)
we see that 7(1) > 1{(g — 1), #(1) > g(q — 1), and #(1) > 3*"*}(3*"*!1 — 1), re-
spectively. In any case #(1) > /|P| — 1, a contradiction. If p =3 and G/Z €
{PSL,(4), M,,}, then |P|=9. But another contradiction is obtained since the
nontrivial irreducible projective characters of these simple groups have minimal
degrees

4, if G/Z = PSL4(4),
x(1) = o
10, if G = M,,.

If p=>5 and G =%F,(2) then every nontrivial irreducible character x of G has
degree x(1) > 26. However, |P| = 25, a contradiction.

If p =5 and G = Aut(’B,(2°)), then every faithful irreducible character x of G
has degree x(1) > #(1), where « is a nontrivial irreducible character of the Suzuki
group 2B,(q), g = 2°, of minimal degree. Now by Landazuri and Seitz [8, p. 419],
w(1) = 4 - 31 = 124. Since |P| = 125, we obtain x(1) > /|P| — 1, a contradiction.

If p =15 and G/Z = Mc, then every irreducible nontrivial character x of G has
degree x(1) > 22 by the character table of Mc (see [11]). As |P| = 125, G cannot be
a minimal counterexample. If G/Z = Mc and |Z| = 3, we again use the character
table of G (see [11]) and find that the nontrivial projective irreducible character x of
minimal degree has degree x(1) = 126 > V125 — 1, another contradiction.

If p = 11 and G = J,, then x(1) > 1333 by [11]. Since |P| = 11°, x(1) > |P| — 1,
which is impossible by hypothesis.

Therefore p = 2. Hence by Theorem 2 of Suzuki [13] and Proposition 1.4 we get
G/Z € {PSL,(q),PSU;(q),*B,(q)}, where g is a power of 2. Using the theorem of
Landazuri and Seitz [8] as above, we obtain our final contradiction. This completes
the proof.

REMARK 3.3. It is not possible to replace the bound ‘/|7| — 1 by the bound
1(|P| — 1) of Sibley’s theorem [12]. Let G = Mc, p = 5, and x be the irreducible
character of G with degree x(1) = 22. The Sylow 5-subgroup P of G is T.I. and has
order |P| = 5%=125. Hence x(1)=22 < 62 = 4(|P|— 1). However, P is not
normal. In particular, Sibley’s condition that P be weakly self-centralizing cannot be
weakened to P being a T.I. set.
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