ELEMENTARILY EQUIVALENT FIELDS WITH INEQUIVALENT PERFECT CLOSURES

CARLOS R. VIDELA

ABSTRACT. We give a counterexample to the following conjecture due to L. V. den Dries: Let F, L be two fields of characteristic p. If $F \equiv L$ then $F^{1/p^{\infty}} \equiv L^{1/p^{\infty}}$.

Introduction. Van den Dries conjectures in [3, Stellingen 4] that elementarily equivalent fields have elementarily equivalent perfect closures. We will give a counterexample using a predicate introduced by Cherlin [1] in the study of definability in power series fields of nonzero characteristic.

Our counterexample is as follows: Fix a prime number p. Let $\tilde{\mathbf{F}}_p$ be the algebraic closure of the prime field \mathbf{F}_p , let $K_0 = \tilde{\mathbf{F}}_p(t)$ be the rational function field, and let $L_0 = K_0^*$ be a nonstandard extension of K_0 , e.g. an ultrapower of K_0 . In particular $K_0 \equiv L_0$. We will prove:

THEOREM. The perfect closures of K_0 and L_0 are not elementarily equivalent.

The idea behind the proof is the following: we will relate the p^n th powers of t, for n an integer, to the p^n th roots of t in the perfect closure $K = K_0^{p^{-\infty}}$ of K_0 . However the p^N th powers of t with N infinite will not correspond to roots of t in $L = L_0^{p^{-\infty}}$.

We will produce a sentence Φ whose meaning is approximately

"For all *n* if t^{p^n} exists then t^{1/p^n} exists."

 Φ will hold in K and fail in L.

We make extensive use of the polynomial $\tau(x) = x^p - x$. We will need first order definitions of the following three predicates defined in K.

(1) $\operatorname{Con}(x)$: " $x \in \tilde{\mathbf{F}}_p$,"

(2) $\operatorname{Reg}(x)$: " $\neg \exists b \in \tilde{\mathbf{F}}_p - \{0\}, bx \in \tau[K],$ "

(3) Link(y, x): " $\exists n \in \mathbb{Z}, a \in \tilde{\mathbb{F}}_n, y = x^{p^n} + a \& \operatorname{Reg}(x)$."

For Con(x) we can do the following: choose n > 2 and relatively prime to p. Then the curve E defined by the equation $x^n + y^n = 1$ is nonrational [2, p. 7]. This shows that the only solutions to the equation in K_0 must be constants. The same is true of K: for if $x_0, y_0 \in K$ are such that $x_0^n + y_0^n = 1$, then by taking p^k th powers for k large enough, we get

$$\left(x_0^{p^k}\right)^n + \left(y_0^{p^k}\right)^n = 1$$

©1987 American Mathematical Society 0002-9939/87 \$1.00 + \$.25 per page

Received by the editors September 16, 1985. This paper was presented at the meeting of the Mid-Atlantic Mathematical Logic Seminar, Institute for Advanced Study, Princeton, New Jersey, December 15, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 03C60, 12L12.

Key words and phrases. Elementary equivalence, valuation, nonstandard model.

with $x_0^{p^k}$, $y_0^{p^k} \in K_0$. Hence x_0 and y_0 are constants. We have shown that Con(x) defines the same set in K_0 and in K, namely $\tilde{\mathbf{F}}_p$. Reg(x), read "x is regular," is visibly first order definable. We will use the following fact: Let $x \in K_0$. Then $K_0 = \text{Reg}(x) \Leftrightarrow K \models \text{Reg}(x)$. A proof of this is implicit in Lemma 1 below.

The definition of Link(y, x) is as follows: First define a predicate $L_0(y, x)$ in the following way:

$$\forall a \in \tilde{\mathbf{F}}_{p} \exists ! b \in \tilde{\mathbf{F}}_{p} (ay - bx \in \tau [K]).$$

Notice that $L_0(y, x)$ implies x is regular: take a = 0. When $L_0(y, x)$ holds, we write y[a] for the element b satisfying $ay - bx \in \tau[K]$, and we define Link(y, x) by a first order formalization of

$$``L_0(y, x) \& \forall a_1, a_2 \in \tilde{\mathbf{F}}_p(y[a_1a_2] = y[a_1]y[a_2]).''$$

We will prove later that this has the intended meaning in K. Notice also that $\tau[K]$ is an additive abelian group and that, if $L_0(y, x)$, then the map $a \mapsto y[a]$ is an abelian group homomorphism (so that Link(y, x) says it is a field isomorphism too).

We can now write down the sentence Φ :

$$\forall x, y([\operatorname{Link}(y, x) \& \neg \operatorname{Con}(y - x) \& \forall a(\operatorname{Con}(a) \Rightarrow \operatorname{Reg}(x(y - a)))] \\ \Rightarrow \exists z, b[\operatorname{Con}(b) \& \operatorname{Link}(z, x) \& \operatorname{Link}(xz, x(y - b)) \& \neg \operatorname{Con}(y - z)]).$$

We will show that Φ is true in K; on the other hand taking x = t we will see that Φ is false in L. It turns out that the content of Φ is approximately

$$\forall x \forall n \neq 0 \forall y \in x^{p^n} + \tilde{\mathbf{F}}_p \Big(\exists z, a \in \tilde{\mathbf{F}}_p \Big((xz)^{p^n} = x(y-a) \& x - z^{p^n} \in \tilde{\mathbf{F}}_p \Big) \Big).$$

1. The interpretation of Φ in *K*.

LEMMA 1. For $x, y \in K_0$, if $K \models \text{Link}(y, x)$, then $K_0 \models \text{Link}(y, x)$.

PROOF. Let $a \in \tilde{\mathbf{F}}_p$. Then there exist $b \in \tilde{\mathbf{F}}_p$ and $w \in K$ such that $ay - bx = w^p - w$. Note that w is inseparable over K_0 . Since $w^p - w \in K_0$, it follows that $K_0(w) = K_0(w^p) = K_0(w^{p^2}) = \cdots$. Hence w is separable over K_0 and so must be in K_0 .

We will show that Link(y, x) has the intended meaning by proving that the map $a \mapsto y[a]$ is a first-order definable automorphism of $\tilde{\mathbf{F}}_p$ with parameters in \mathbf{F}_p . It will then follow that $y[a] = a^{p^n}$ for some $n \in \mathbb{Z}$. Finally, we show that this implies $y - x^{p^{-n}}$ is a constant.

For $x \in K_0$ let P_x be the set of all poles (finite and at infinity) \neq of x. For each \neq let $\tilde{\mathbf{F}}_p((t_A))$ be the completion of K_0 with respect to the valuation V_A determined by \neq . K_0 is embedded in $\tilde{\mathbf{F}}_p((t_A))$. We will make use of the following fact [1, p. 103]: Let $x \in \tilde{\mathbf{F}}_p((t_A))$, $x = \sum x_i t_p^i$, then $x \in \tau[\tilde{\mathbf{F}}_p((t_A))]$ if and only if the following conditions (c_i) for i < 0, $i \neq 0 \pmod{p}$ are satisfied:

$$(c_i)$$
 $\sum_{n \ge 0} (x_{ip}n)^{1/p^n} = 0.$

REMARK. Notice that if $\nu_{\not p}(x) \ge 0$, then $x \in \tau[\tilde{\mathbf{F}}_p((t_{\not p}))]$, since the left-hand side of (c_i) is zero.

LEMMA 2. Suppose $x, y \in K_0$ and Link(y, x). Then the map $a \to y[a]$ is a first order definable (with parameters) automorphism of $\tilde{\mathbf{F}}_p$.

PROOF. Fix $p \in P_x$ and let $a \in \tilde{\mathbf{F}}_p$. There exists $b \in \tilde{\mathbf{F}}_p$ such that $ay - bx \in \tau[K_0]$. In the completion $\tilde{\mathbf{F}}_p((t_A))$, the finitely many equations (c_i) define a first-order formula $\theta_p(u, w, \bar{c}_p)$, where \bar{c}_p is a sequence of parameters (essentially the coefficients in the principal parts of the Laurent expansions of y and x), such that, for a and b as above $\theta_p(a, b, \bar{c}_p)$ holds.

Define $\psi(u, w) = \bigwedge_{A \in P_x} \theta_p(u, w, \bar{c}_p)$. We claim that for any $a \in \tilde{\mathbf{F}}_p$, $b = y[a] \Leftrightarrow \psi(a, b)$. The claim follows if we show that given $a \in \tilde{\mathbf{F}}_p$ there exist one and only one $b \in \tilde{\mathbf{F}}_p$ with $\psi(a, b)$. So suppose $\psi(a, b)$ and $\psi(a, b')$. This implies that $(b - b')x \in \tau[\tilde{\mathbf{F}}_p((t_A))]$ for all $p \in P_x$, hence $(b - b')x \in \tau[K_0]$ and since x is regular, b = b'. For the existence, take b = y[a].

LEMMA 3. Let F be an algebraically closed field of characteristic p. Then

(i) if $\phi: F \to F$ is an automorphism of F definable over F, there exists $r(x) \in F(x)$ and $n \in \mathbb{N}$ such that, except for finitely many elements of F, we have $\phi(a) = r(a)^{1/p^n}$. (ii) if $\phi: F \to F$ is an automorphism of F and $r(x) \in F(x)$ is such that $r(a) = \phi(a)$ for all $a \in F$ except for a finite set, then $r(x) = x^{p^k}$ for some $k \in \mathbb{Z}$.

PROOF. Let t be transcendental over F and let $\widetilde{F(t)}$ be the algebraic closure of F(t). Then $F \prec \widetilde{F(t)}$. Let $\tilde{\phi}$ be the definable extension of ϕ to $\widetilde{F(t)}$. We have $\tilde{\phi} \in \operatorname{Aut} \widetilde{F(t)}$.

Let $G = \operatorname{Gal}(\widetilde{F(t)}/F(t)), \psi(x, y, \overline{c})$ be a definition of ϕ over F. Then for any $\sigma \in G$ we have

$$\begin{split} \widetilde{F(t)} &\models \psi(t, \widetilde{\phi}(t), \overline{c}) \\ \Rightarrow \widetilde{F(t)} &\models \psi(\sigma(t), \sigma(\widetilde{\phi}(t)), \sigma(\overline{c})) \\ \Rightarrow \widetilde{F(t)} &\models \psi(t, \sigma(\widetilde{\phi}(t)), \overline{c}). \end{split}$$

Hence $\sigma(\tilde{\phi}(t)) = \tilde{\phi}(t)$, i.e. $\tilde{\phi}(t) \in F(t)^{1/p^{\infty}}$. This proves $\tilde{\phi}(t) = r(t)^{1/p^{n}}$ for some $r(x) \in F(x)$ and $n \in \mathbb{N}$. Next we show that the set $A := \{a \in F | \tilde{\phi}(a) = r(a)^{1/p^{n}}\}$ has finite complement. This follows from the following two facts:

(a) A is infinite,

(b) F is strongly minimal.

To prove (a) note that for any finite set $S \subset F$

$$\widetilde{F(t)} \vDash \exists x \big(\tilde{\phi}(x) = r(x)^{1/p^n} \& x \notin S \big),$$

hence $F \vDash \exists x(\tilde{\phi}(x) = r(x)^{1/p^n} \& x \notin S).$

To prove (ii) note that for t transcendental (as above) we have infinitely many $a \in F$ such that

$$r(at) = r(a)r(t).$$

Hence the set of zeros Z and the set of poles P of r(x) are closed under multiplication by a for infinitely many $a \in F$. Since Z and P are finite sets we have $Z = P = \{0\} \cup \{\infty\}$, and so $r(x) = x^{p^n}$. \Box

It follows that $\phi(x) = r(x)$ for all $x \in F$.

COROLLARY. With the assumptions of Lemma 3 there exists $k \in \mathbb{Z}$ such that $y[a] = a^{p^k}$.

The following fact will be used in the proof of Proposition 1.

FACT. If $y, x \in K_0$ and Link(y, x), then $P_x = P_y$.

PROOF. By symmetry it is enough to show that $P_y \subseteq P_x$. Suppose not. Let $p \in P_y - P_x$. Then, since $v_{\not A}(x) \ge 0$, for all $a \in \tilde{\mathbf{F}}_p$ we have $ay \in \tau[\tilde{\mathbf{F}}_p((t_{\not A}))]$. Since $\tilde{\mathbf{F}}_p$ is infinite, it follows by using equation (c_i) that the principal part of the Laurent expansion of y must be zero, hence $v_A(y) \ge 0$, a contradiction.

PROPOSITION 1. Let $x, y \in K_0$ and assume that x is regular. Then

 $K_0 \vDash \operatorname{Link}(y, x) \Leftrightarrow \exists n \in \mathbb{Z} \text{ and } c \in \tilde{\mathbf{F}}_p \text{ such that } y = x^{p^n} + c.$

PROOF. Assume L(y, x). The corollary to Lemma 4 implies that $y[a] = b = a^{p^n}$ for some $n \in \mathbb{Z}$. Hence $ay - a^{p^n}x \in \tau[\tilde{\mathbf{F}}_p((t_A))]$ for all $\not a \in P_x$ and all $a \in \tilde{\mathbf{F}}_p$. We claim that $\nu_A(y - x^{p^{-n}}) \ge 0$ for all $\not a \in P_x$. Conditions (c_i) yield the following

$$(c_i) \qquad \qquad \sum_{k=0}^{N_0} \left(a y_{ip^k} - a^{p^n} x_{ip^k} \right)^{1/p^k} = 0,$$

where $N_0 \in \mathbb{N}$ and the y_{ip^k} , x_{ip^k} are the coefficients appearing in the principal part of the Laurent expansions of y and x. Taking p^{N_0} th powers in the above equation gives us a polynomial in a, which is identically zero. By distinguishing the possibilities $N_0 > n$, $N_0 = n$, and $N_0 < n$ one shows that $y_i^{p^n} = x_{ip^n}$ for all i < 0.

To conclude the proof note that a pole of $y - x^{p^{-n}}$ is a pole of y or x and by the fact stated before the proposition it is a pole of x. Hence $y - x^{p^{-n}}$ has no poles at all and so must be a constant. For the other implication take $b = a^{p^{-n}}$; uniqueness is a consequence of the regularity of x.

COROLLARY. For $y, x \in K$, x regular,

 $K \vDash \text{Link}(y, x) \Leftrightarrow \exists n \in \mathbb{Z} \text{ and } a \in \tilde{\mathbf{F}}_n \text{ such that } y = x^{p^n} + a.$

PROOF. Taking p^n th powers yields an automorphism of K. Therefore we may take $y, x \in K_0$ and note that regularity over K or K_0 is the same. The result follows from Lemma 1 and Proposition 1.

PROPOSITION 2. $K \models \Phi$.

PROOF. Let $x, y \in K$ satisfy Link(y, x). Then $y = x^{p^n} + a$ for some n and a. We may assume $n \neq 0$ since otherwise y - x is a constant. Take b = a and $z = x^{p^{-n}}$. Clearly Link(z, x). Then $x(y - b) = xx^{p^n}$ and $xz = xx^{p^{-n}} = (xx^{p^n})^{p^{-n}}$. We have that y - z is not constant and Link(xz, x(y - b)).

2. The interpretation of Φ in L. The set defined by Con(x) in L and in L_0 is the same; denote it by $\tilde{\mathbf{F}}_p^*$. Lemma 1 remains true for the pair L_0 , L. By transfer applied to the structure $(L_0, \mathbf{Z}^*, \tilde{\mathbf{F}}_p^*)$ we get that, for $x, y \in L$, x regular,

$$L \models \text{Link}(y, x) \Leftrightarrow \exists n \in \mathbb{Z}^*, a \in \tilde{\mathbb{F}}_p^* \text{ such that } y = x^{p^n} + a$$

Proposition 3. $L \nvDash \Phi$.

PROOF. Take x = t and $y = t^{p^N}$ with N infinite and positive. Clearly x is regular and linked to y. Next, for any $a \in \tilde{\mathbf{F}}_p^*$, we claim that $t(t^{p^N} - a)$ is regular. Otherwise, by transfer we could have $bt(t^{p^n} - a') \in \tau[K_0]$ with $b \neq 0$, b, $a' \in \tilde{\mathbf{F}}_p$, and n a positive integer. But this is impossible. So, assume there exists z, $a \in \tilde{\mathbf{F}}_p^*$ such that Link(z, t) and $\text{Link}(tz, t(t^{p^N} - a))$. Then $z = t^{p^n} + a'$, $a' \in \tilde{\mathbf{F}}_p^*$, $n \in \mathbb{Z}^*$. Notice that if n < 0, then n cannot be infinite since $L = \bigcup_{n \in w} L_0^{1/p^n}$.

From Link $(tz, t(t^{p^N} - a))$ we get an equation of the form

(1)
$$t(t^{p^n} + a') = \left(t(t^{p^N} - a)\right)^{p^k} + a''$$

for some $a'' \in \tilde{\mathbf{F}}_p^*$ and $k \in \mathbb{Z}^*$. Note that a'' must be equal to zero. We show (1) cannot hold.

Case 1. a' = 0, (or a = 0). Then a = 0 and we have $t^{p^n+1} = t^{p^k} t^{p^{N+k}}$, so $p^n + 1 = p^k + p^{N+k}$. The equation has the following solutions: (a) k = 0, n = N, and (b) N + k = 0, n = k. (a) implies y = z which we have excluded and (b) implies n = -N which is also impossible as N is infinite.

Case 2. $a' \neq 0$ and $a \neq 0$. In this case k = 0 so N = n and y - z = a which is impossible. Thus Φ is false in L, and $K \neq L$.

I thank G. Cherlin for his help in the preparation of this paper.

References

1. G. Cherlin, *Definability in power series rings of nonzero characteristic models and sets*, Lecture Notes in Math., vol. 1103, Springer-Verlag, Berlin and New York, 1984.

2. I. R. Shafarevich, Basic algebraic geometry, Springer-Verlag, New York, 1977.

3. L. Van den Dries, Model theory of fields, Thesis, Utrecht 1978, Stellingen 4.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903