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THE SUP = MAX PROBLEM FOR 5

ANDREW J. BERNER1  AND ISTVÁN JUHÁSZ

Abstract. Let 5( X) = sup{ d(D): D is a dense subspace of X}. It is shown that if

« is a limit cardinal, but not a strong limit, and cf(ic) > w, then there is a

O-dimensional Hausdorff space X such that S(X) = k, but for all dense D c X,

d(D) < k. For all other values of k, if X is Hausdorff and S( X) = k, then there is a

dense D c X such that d(D) = k.

1. Introduction. We consider the SUP = MAX problem for the cardinal function 5

defined as

5( A) = sup{d(D): D is a dense subspace of X}.

For Hausdorff spaces, the solution is given by Theorem 1.

It is easy to verify that d(X) < 5(A) < d(X) ■ t(X). Let X = 2">. Then d(X) =

w. However, 2(2"') c X is dense, and J(2(2"')) = «, = w(X). Thus we have an

example where 5(A) > d(X).

Theorem 1. If k is a limit cardinal, but not a strong limit, and cf(«) > to, then

there is a O-dimensional Hausdorff space X such that 5(A) = k, but for all dense

D c A, d(D) < k. Otherwise, if X is Hausdorff and 5(A) = k, then there is a dense

D c Xsuch that d(D) = k.

We will prove Theorem 1 in §§2 and 3.

As always with the SUP = MAX problem, we need only consider the case where

5(A) = k is a limit. It is easy to see that the theorem fails for non-Hausdorff A.

Suppose, for example, k = Ua<cf(K)KQ. Let {Xa: a < cf(ic)} be a pairwise disjoint

collection of sets with | AJ = «a. Let A = Ua<cf(K) Xa. Define a set O c A to be

open if either O = 0 or \Xa — 0\ < na for all a < cî(k). A is 7\ but not T2. Since

Xa is dense in A, 5(A) = k. If D c A is dense, then \D n AJ = Ka for some

a < cf(rc) (otherwise D is closed), and then D n Xa is dense, so d(D) < k. Thus

SUP = MAX fails for all limits.

We will use the following notation. If S is a set, a(S) = { p g 2s: \p" (1)| < a).

Note that a(S) is dense in 2s. If S is a set, H(S) is the collection of all finite partial

functions from S into {0,1}. If h G H(S), then (h) = {p g 2s: /? extends A}.

Thus {(h): h g //(5)} is the standard basis for 2s.

For the rest of the paper, we will assume that all spaces are Hausdorff.
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2. When SUP = MAX. We first prove the second part of the theorem. As noted,

we may assume k is a limit cardinal. Suppose 5( A) = k and k is a strong limit (i.e.

if A < k then 2X < k). Then d(X) = k since |A| < exp(exp(c/( A))) [1, Theorem 2.4]

and 5(A) < |A|.

Suppose 5( A) = k and cí(k) = to. Let

gg= {o c A: O * 0 is open and if U c O is open then 5(U) = 5(0)}.

If V is an open set, we can choose an open O c V such that 5(0) = min{5(0'): O'

is open and O' c V). Then O g 3è so SS is a 77-base for A. Let ^# be a maximal

collection of pairwise disjoint elements of 38.

Case 1. \Ji\ = k. Suppose D is dense in A. We show d(D) ^ k. Let 5 c D be

dense. Then 5 is dense in A, thus S Ci M ¥= 0 for all M g J(, so |S| > k.

Therefore, ¿(D) = k (since 5(A) = k).

Case 2a. |^#| < k, but for all M G Jí, 8(M) < k. There cannot be a cardinal

A < k s.t. 8(M) < X for all M g ^#, since if there were, suppose D is a dense subset

of A. Then for each M g J( there is Z)M c D C\ M which is dense in D O M such

that \DM\ < 8(M) < A. Then U^g^i)« is dense in Z), since JÍ was maximal and

á? was a w-base. However, UM6^.DM| < A • \Jt\. This implies that 5( A) < A • |^#|

< k, so there can be no such A. Thus there is a sequence (k,: í: g ce) converging to k

and a sequence (M,: /' g w)with M, g ^# and 8(M¡) > k¡ for all /. Let

J(' = (M,:ieu}u{|J{M6J: M # M,- for all / g w} ).

^#' is a maximal pairwise disjoint collection of open sets in A. For each i, choose a

set Z), c Mi such that i/(Z),-) > k( and D, is dense in M¡. Then D = U/euI>,- U

U{ M g ^#: M # M, for all < G w} is a dense subset of A. Suppose D' is a dense

subset of D. Then /)' n Di is dense in £>,, thus \D' n Z),| > k;. Since the collection

{£),: /' G w} is pairwise disjoint, \D'\ ^ |U,-6u/)' n D¡\ = k. Thus J(D) = k (since

5(A) = k, d(D)^ k).

Caie 2b. There isMejf s.t. 5(M) = k (note that since 5(0) < 5(A) for all open

O c A, we cannot have 5(M) > k).

Since A is Hausdorff, we can choose a countable maximal collection {M,: / g co}

of pairwise disjoint open subsets of M. By the definition of Jl, 8(Mt) = k for all i.

Choose a sequence («,: /' G u) of cardinals converging to k with k, < k for each /'.

Choose a dense Di c M, s.t. d(D¡)> k¡. Let D = U/6uD, U ( A - Af). By an

argument similar to Case 2a, d(D) = k.

It was in this last argument that we needed to know that cf(/c) = co, since we could

only guarantee that we could choose a countable collection of pairwise disjoint open

subsets of M.

When SUP = MAX fails. Suppose k is a limit cardinal, but not a strong limit, and

cf(/<) > to. We will construct a space A c 2" such that 5(A) = k, but for all dense

DcA, d(D) < k.
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Choose A < k such that 2X > k. It is well known that 2" has a dense subset 5 with

\S\ = X.
Let (Ka: a < cf(/c)) be an increasing sequence of cardinals converging to k with

k0 = 0 and k, = A. For each a < cf(«), let â = [k0, Ka+1). If ß < k, Let a(ß) be

the unique a < cf(rc) such that yS g â, and if 7 c k, let a(7) = {a(ß): ß G y}.

For a < cf(rc) define

Xa = { /> G 2": /?|â g a(â) and there is s g S such that p\(tr - &) = s\(k - à)}.

Let A = Ua<cf(lc)Aa. Since S is dense in 2" and a(â) is dense in 2", Aa is dense in

A for each a. Also (since ¿/(a(â)) = k0 + 1 ^ A) úf(Aa) = Ka+l. Thus 5(A) > k, and,

since tv( A) = w(2") = k, 5(A) = k.

Suppose Z) is a dense subset of A. We must show that d(D) < k. Note in what

follows, that, since A is dense in 2", if O is an open subset of 2", O D D # 0 if and

only if O # 0.

Suppose A G Z/(k). We will say h is good if there is ß < cî(k) s.t. (h) D D n Xß

+ 0 and /? £ a(dom(A)). Otherwise, we will say h is Aa<Z. (Of course, whether h is

good or bad depends upon D.)

For each seS, let

A5 = {ß: 3p G A^n D suchthat p\(n - ß) = s\(k - ß)}.

If Ay is finite, let Bs = As. If ^s is infinite, let Bs be a countably infinite subset of

As.

For each jeS and /3 g Bs, choose p(s,ß) g D n A,, such that /?(s,/?)|(k - ß)

= j|(k - ß) (i.e. p(s,ß) is a witness to ß g Bs). Let DG = {p(s,ß): s g S,ß g

5,}. Then |Z)C| < A.

If A g ZZ(k) is bad, let Dh = {ß < cf(x): Z) n A^ n (A) * 0}. Then, by the

definition of "bad", Dh c a(dom(A)). Let ,/c //(k) be a maximal collection such

that if h £/, then A is bad and if A,, A2 g^ and hx # A2, then (A,) n (A2> = 0.

Since c(2K) = to, |/| ^ w. Let 7 = U{Z)A: A g/}. Since D,, is finite for each

A e,/, |/| < to. Finally, let DB = U{ D n Xß: jSe/}. Since |AJ < A • |£| = k/8 + 1

< k, and |/| < a < cf(x), it follows that \DB\ < k.

We can now show that Dc U DB is a dense subset of Z>. Suppose A G H(k). If A

is good, then there is /3 < cf(ic) and p G (A) n D n A^ such that /3 € a(dom(A)).

Choose i g 5 such that />|(k — p) = í|(k — p). Then 5 g (A). If As is finite (and

thus Bs = AJ, let ß' = ß. If fis is infinite, choose /?' g Bs - a(dom(A)). Either way,

ß' G Bs - a(dom(h)). Since p(s,ß') \(k - ß') = s \(k - ß') and s g (h), then

p(s,ß')e <A>nZ)c.

If A is bad, then there is A' e,/ such that (A) n <A'> # 0. Let Z) n Xß n <A>

n <A'> * 0. Then /3 g Dh. Cj, so Z>B n <A> # 0. Thus DG U fls is a dense

subset of ZX Since \Da\ < A < k, and |Z>J < k, d(D) < k.

4. Questions about compact spaces. For any space A, 5( A) ^ ir( A). It is shown in

[J, Theorem 3.14c] that if A is compact, then A has a dense left separated sequence

of order type 77(A). If 77(A) is regular, then this sequence has density 77(A), so we
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have shown that if A is compact and 77(A) is regular, then 5(A) = 77(A), and

SUP = MAX holds for 5. This raises the following two questions:

(a) If A is compact, does 5(A) = 77(A)?

(b) If A is compact, does SUP = MAX hold for 5?
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