LINEAR SUMS OF CERTAIN ANALYTIC FUNCTIONS

RAM SINGH AND SURINDER PAUL

ABSTRACT. Let f belong to a certain subclass of the class of functions which are regular in the unit disc $E=\{z\colon |z|<1\}$. Suppose that $\phi=\phi(f,f',f'')$ and $\psi=\psi(f,f',f'')$ are regular in E with $\operatorname{Re}\phi>0$ in E and $\operatorname{Re}\psi\not>0$ in the whole of E. In this paper we consider the following two new types of problems: (i) To find the ranges of the real numbers λ and μ such that $\operatorname{Re}(\lambda\phi+\mu\psi)>0$ in E. (ii) To determine the largest number $\rho,0<\rho<1$, such that $\operatorname{Re}(\phi+\psi)>0$ in $|z|<\rho$.

1. Introduction. Let A denote the class of functions f that are regular in the unit disc $E = \{z : |z| < 1\}$ and are normalized by the conditions f(0) = f'(0) - 1 = 0. We shall denote by S the subclass of A whose members are univalent in E. A function f belonging to S is said to be starlike of order α , $0 \le \alpha < 1$, if $\text{Re}(zf'(z)/f(z)) > \alpha$, $z \in E$, and we denote by $S_t(\alpha)$ the class of all such functions. $S_t = S_t(0)$ will be referred to as the class of starlike functions. Finally, we shall denote by K the class of convex functions, consisting of those elements $f \in S$ which satisfy the condition Re(1 + zf''(z)/f'(z)) > 0 in E. It is well known that $K \subset S_t(1/2)$.

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ are regular in E, then their Hadamard product/convolution is the function denoted by f * g and defined by the power series

$$(f*g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

It is known that f * g is also regular in E.

Let $f(z) = \sum_{n=1}^{\infty} a_n z^n$ be regular in E. Then the de la Valleé Poussin mean of f of order n, $V_n(z, f)$, is defined by

$$V_n(z,f) = rac{n}{n+1}a_1z + rac{n(n-1)}{(n+1)(n+2)}a_2z^2 + \cdots + rac{n(n-1)(n-2)\cdots 2\cdot 1}{(n+1)(n+2)\cdots (2n)}a_nz^n.$$

Let f be regular in E and g regular and univalent in E with f(0) = g(0). We say that f is subordinate to g in E (in symbols $f \prec g$ in E) if $f(E) \subset g(E)$.

A sequence $\{c_n\}_1^{\infty}$ of complex numbers is said to be a subordinating factor sequence if, whenever $f(z) = \sum_{n=1}^{\infty} a_n z^n$ is regular and convex in E, we have

$$\sum_{n=1}^{\infty} c_n a_n z^n \prec f(z) \quad \text{in } E.$$

Received by the editors February 26, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 30A26; Secondary 30A36, 30A42.

In the present paper we shall mainly be concerned with the following two new types of problems:

- (a) If $\phi = \phi(f, f', f'')$ and $\psi = \psi(f, f', f'')$, where $f \in K$ or $S_t(1/2)$, such that $\text{Re } \phi > 0$ in E and $\text{Re } \psi$ is not necessarily positive in the whole of the unit disc E, to find the ranges of real numbers λ and μ such that $\text{Re}(\lambda \phi + \mu \psi) > 0$ in E.
 - (b) To find the largest number ρ , $0 < \rho < 1$, such that $\text{Re}(\phi + \psi) > 0$ in $|z| < \rho$.
- 2. Preliminary results. We shall need the following results, which we state as lemmas.
- LEMMA 1. If $f \in K$ and $g \in S_t$, then (f * g F)/(f * g) takes values in the convex hull of F(E) for every function F regular in E.
- LEMMA 2. If f and g belong to $S_t(1/2)$, then (f * g F)/(f * g) takes values in the convex hull of F(E) for every function F regular in E.
- LEMMA 3. A sequence $\{c_n\}_1^{\infty}$ of complex numbers is a subordinating factor sequence if and only if $\text{Re}(1+2\sum_{n=1}^{\infty}c_nz^n)>0$ (|z|<1).

Lemmas 1 and 2 are due to Ruscheweyh and Sheil-Small [1] and Lemma 3 is due to Wilf [2].

3. Theorems and their proofs. It is well known [1] that if $f \in S_t(1/2)$, then $\text{Re}(f(z)/s_n(z,f)) > 1/2$, $z \in E$, where $s_n(z,f)$ denotes the *n*th partial sum of f. From this it follows that given $f \in S_t(1/2)$ and any two real numbers $\lambda \geq 0$ and $\mu \geq 0$, with at least one of them nonzero, then we have

$$\operatorname{Re}\left[\lambda \frac{zf'(z)}{f(z)} + \mu \frac{s_n(z,f)}{f(z)}\right] > 0 \qquad (z \in E).$$

In Theorem 1 below we prove that this result continues to hold even when μ is a suitably restricted negative or complex number.

THEOREM 1. Let $f \in S_t(1/2)$ and

$$L = \operatorname{Re} \left[\lambda \frac{zf'(z)}{f(z)} + \mu \frac{s_n(z, f)}{f(z)} \right],$$

where $s_n(z,f)$ denotes the nth partial sum of f. Then L>0 in E if (i) $\lambda \geq 0$, $\mu \geq 0$ and at least one of them is nonzero, (ii) μ is a complex number and $\lambda > 4|\mu|$. The result is sharp in the sense that the ranges of λ and μ cannot be increased.

PROOF. Case (i) being obvious, we take up the proof of (ii). Since f is given to be in $S_t(1/2)$ and $g(z) = z/(1-z) \in K \subset S_t(1/2)$, it follows from Lemma 2 that if we choose $F(z) = \lambda/(1-z) + \mu(1-z^n)$ then the function

$$\begin{split} \frac{(f*gF)(z)}{(f*g)(z)} &= \frac{f(z)*zF(z)/(1-z)}{f(z)*z/(1-z)} \\ &= \frac{f(z)*[z/(1-z)][\lambda/(1-z)+\mu(1-z^n)]}{f(z)*z/(1-z)} \\ &= \lambda \frac{zf'(z)}{f(z)} + \mu \frac{s_n(z,f)}{f(z)}, \end{split}$$

takes values in the convex hull of F(E).

Now, since by hypothesis, $\lambda > 4|\mu|$, we find that, for $z \in E$,

$$\operatorname{Re} F(z) = \operatorname{Re} \left[\frac{\lambda}{1-z} + \mu(1-z^n) \right]$$

$$\geq \lambda/(1+r) - |\mu|(1+r^n)$$

$$> \lambda/2 - 2|\mu| > 0$$

(equality in the second line holds at z = -|z| = -r when μ is negative and n is odd).

Since $(\lambda z f'(z)/f(z) + \mu s_n(z, f)/(f(z))$ takes values in the convex hull of F(E), assertion (ii) now follows.

To prove that the ranges of λ and μ cannot be increased without violating the assertion of our theorem, we consider the function $f_0(z) = z/(1-z)$ which belongs to K and hence to $S_t(1/2)$. Let

$$L_0 = \operatorname{Re}\left[\frac{\lambda z f_0'(z)}{f_0(z)} + \mu \frac{s_n(z, f_0)}{f_0(z)}\right]$$
$$= \operatorname{Re}\left[\frac{\lambda}{1-z} + \mu(1-z^n)\right] \qquad (z \in E).$$

If $\lambda \geq 0$, $\mu \geq 0$ with at least one of them nonzero, then clearly $L_0 > 0$ in E. On the other hand if $\lambda < 0$, then $L_0 \ngeq 0$ in E whatever μ may be. Finally, when $\lambda > 0$ and μ is negative, then it is seen that $L_0 > 0$ in E only when $(\lambda/2 - 2|\mu|) > 0$. This completes the proof of our theorem.

REMARK. Since the function $f_0(z)$ also belongs to K, Theorem 1 remains sharp within this subclass of $S_t(1/2)$.

The significance of the following theorem emerges from the fact that if $f \in K$, then Re(1/f'(z)) need not be positive in the whole of the unit disc.

THEOREM 2. If $f \in K$, then for all λ and μ with $\mu \geq 0$ and $\lambda > 2\mu$, we have

$$\operatorname{Re}\left[\frac{\lambda f(z)}{zf'(z)} + \frac{\mu}{f'(z)}\right] > 0 \qquad (z \in E).$$

PROOF. Since $f \in K$ and the function $g(z) = z/(1-z)^2$ is in S_t , in view of Lemma 1 we conclude that for all $z \in E$ the function w, defined by

$$\begin{split} w(z) &= \frac{f(z) * [z/(1-z)^2][\lambda(1-z) + \mu(1-z)^2]}{f(z) * z/(1-z)^2} \\ &= \frac{\lambda f(z)}{z f'(z)} + \frac{\mu}{f'(z)}, \end{split}$$

takes values in the convex hull of F(E), where $F(z) = \lambda(1-z) + \mu(1-z)^2$.

Now, since by hypothesis, $\lambda > 2\mu$, $\mu \ge 0$, we find that

$$\operatorname{Re} F(z) = \operatorname{Re}[\lambda(1-z) + \mu(1-z)^{2}]
= (\lambda - 2\mu)(1 - r\cos\theta) + \mu[(1-r^{2}) + 2(1 - r\cos\theta)^{2}] \quad (z = re^{i\theta})
> 0, \qquad z \in E.$$

The assertion of Theorem 2 is now clear.

The fact that for every $f \in S_t(1/2)$, Re f'(z) > 0 only in $|z| < 1/\sqrt{2} = 0.707...$ underlines the importance of our next theorem.

THEOREM 3. If $f \in S_t(1/2)$, then

$$\operatorname{Re}\left[\frac{f(z)}{z}+f'(z)
ight]>0$$

in $|z| < \rho = \sqrt{4\sqrt{2} - 5} = 0.81...$ The number ρ is the best possible one.

PROOF. Consider the function

(1)
$$h(z) = \frac{1}{1-z} + \frac{1}{(1-z)^2} \qquad (z \in E).$$

We first proceed to prove that $\operatorname{Re} h(z) > 0$ in $|z| < \rho = \sqrt{4\sqrt{2} - 5} \doteqdot 0.81 \dots$ Letting $1/(1-z) = Re^{i\phi}$, we get

(2)
$$\frac{1}{1+r} \le R \le \frac{1}{1-r} \qquad (|z|=r)$$

and

(3)
$$\cos \phi = \frac{1 + R^2 - r^2 R^2}{2R} \quad (\leq 1).$$

(1) and (3) provide

$$2\operatorname{Re} h(z) = 2[R\cos\phi + R^2\cos 2\phi]$$

= $2 + (1 - 3r^2)t + (1 - r^2)^2t^2$ $(t = R^2)$
= $\psi(t)$, say.

It is now readily verified that for $r \ge \sqrt{7} - 2$, t_1 given by $t_1 = (3r^2 - 1)/2(1 - r^2)^2$ lies in the range of $t = (R^2)$ and that $\partial \psi / \partial t = 0$ and $\partial^2 \psi / \partial t^2 > 0$ at $t = t_1$. We, therefore, conclude that for $r \ge \sqrt{7} - 2$,

$$\min \psi(t) = \psi(t_1) = rac{8(1-r^2)^2 - (3r^2-1)^2}{4(1-r^2)^2} > 0,$$

if $r < \rho = \sqrt{4\sqrt{2} - 5} \doteqdot 0.81 \dots$

On the other hand, if $r < \sqrt{7} - 2$, then one can easily see that

$$\min \psi(t) = \psi\left(\frac{1}{(1+r)^2}\right) = \frac{2(2+r)}{(1+r)^2} > 0.$$

To sum up, we have shown that

$$\operatorname{Re} h(z) > 0 \quad \text{in } |z| < \rho = \sqrt{4\sqrt{2} - 5},$$

from which it follows that

(4)
$$\operatorname{Re} h(\rho z) > 0, \quad z \in E.$$

Now taking g(z)=z and $F(z)=\rho h(\rho z)$ in Lemma 2, we conclude that the values of the function

$$\begin{split} g(z) &= \frac{f(z) * z [\rho h(\rho z)]}{f(z) * z} \\ &= \frac{f(z) * z [\rho/(1 - \rho z) + \rho/(1 - \rho z)^2]}{f(z) * z} \\ &= \rho \left[\frac{f(\rho z)}{\rho z} + f'(\rho z) \right] \end{split}$$

lie in the convex hull of F(E). However, in view of (4) we have

$$\operatorname{Re} F(z) = \operatorname{Re} \rho h(\rho z) > 0$$
 in E .

We have thus proved that

$$\operatorname{Re}\left[rac{f(
ho z)}{
ho z} + f'(
ho z)
ight] > 0$$

in E and hence

$$\operatorname{Re}\left[\frac{f(z)}{z}+f'(z)
ight]>0\quad ext{in }|z|<
ho.$$

If we consider the function $f_0(z) = z/(1-z) \in K \subset S_t(1/2)$ then it is seen that

$$\frac{f_0(z)}{z} + f_0'(z) = \frac{1}{1-z} + \frac{1}{(1-z)^2},$$

and the assertion regarding the sharpness of the number ρ now becomes obvious in view of the definition of the function h.

THEOREM 4. If $f \in K$, then

$$\operatorname{Re}\left[\left(1+\frac{zf''(z)}{f'(z)}\right)+\frac{1}{f'(z)}\right]>0$$

in $|z| < \rho = (\sqrt{5} - 1)/\sqrt{2} = 0.874...$ The number ρ cannot be replaced by any larger one.

PROOF. Proceeding as in the proof of the previous theorem, one can show that the function h, defined by

(5)
$$h(z) = 2/(1-z) - 1 + (1-z)^2 \qquad (z \in E),$$

has the property that $\operatorname{Re} h(z) > 0$ only when $|z| < \rho = (\sqrt{5} - 1)/\sqrt{2} = 0.874...$, from which it follows that

(6)
$$\operatorname{Re} h(\rho z) > 0 \quad \text{in } E$$

Since the function f is given to be in K and $g(z) = z/(1 - \rho z)^2$ belongs to S_t , Lemma 1, in conjunction with (6), provides that the function p, defined by

$$\begin{split} p(z) &= \frac{f(z) * g(z)h(\rho z)}{f(z) * g(z)} \\ &= \frac{f(z) * [\rho z/(1-\rho z)^2][2/(1-\rho z)-1+(1-\rho z)^2]}{f(z) * \rho z/(1-\rho z)^2} \\ &= \left(1 + \frac{\rho z f''(\rho z)}{f'(\rho z)}\right) + \frac{1}{f'(\rho z)}, \end{split}$$

has positive real part in E. The desired conclusion is now obvious.

The sharpness of the number ρ follows from the fact that for the function $f_0(z) = z/(1-z) \in K$ we have

$$\left(1 + \frac{zf_0''(z)}{f_0'(z)}\right) + \frac{1}{f_0'(z)} = \frac{2}{1-z} - 1 + (1-z)^2$$

$$= h(z) \quad \text{(given by (5))},$$

and that Re h(z) > 0 only when $|z| < \rho = (\sqrt{5} - 1)/\sqrt{2}$.

We observe that the disc $|z| < \rho = 0.874...$ is much larger than the disc $|z| < \sqrt{2}/2 = 0.707$ in which Re(1/f'(z)) > 0 for every $f \in K$.

We omit the proof of the following theorem.

THEOREM 5. If $f \in S_t(1/2)$, then

$$\operatorname{Re}\left[\frac{z^2f''(z)}{f(z)} + \frac{zf'(z)}{f(z)}\right] > 0$$

in $|z| < \rho = \sqrt{8\sqrt{2} - 11} = 0.56...$ The number ρ is the best possible one.

If $f \in K$, then it is well known that g(z) = (f(z) - f(-z))/2 is an odd function in S_t and hence Re(z/g(z)) > 0 in E. Our next theorem generalizes this latter result.

THEOREM 6. Let $f \in K$. Then for each integer $n \ge 1$ we have

$$\operatorname{Re} \frac{v_n(z,f) - v_n(-z,f)}{f(z) - f(-z)} > 0 \qquad (z \in E),$$

where $v_n(z, f)$ is the de la Valleé Poussin mean of f of order n.

PROOF. Let us first suppose that n is an odd integer, n = 2m + 1, say, and consider the function F_{2m+1} defined by

$$(7) F_{2m+1}(z) = 2(1-z^2) \left[\frac{2m+1}{2m+2} + \frac{(2m+1)2m(2m-1)}{(2m+2)(2m+3)(2m+4)} z^2 + \frac{(2m+1)(2m)(2m-1)(2m-2)(2m-3)}{(2m+2)(2m+3)(2m+4)(2m+5)(2m+6)} z^4 + \dots + \frac{(2m+1)(2m)\cdots 2\cdot 1}{(2m+2)(2m+3)\cdots (2(2m+1))} z^{2m} \right].$$

Obviously F_{2m+1} is regular in E (in fact it is an entire function), and we can write it in the form

$$(8) F_{2m+1}(z) = 2 \left[\frac{2m+1}{2m+2} - \frac{2m+1}{(2m+2)} \left\{ 1 - \frac{2m(2m-1)}{(2m+3)(2m+4)} \right\} z^{2} - \frac{(2m+1)2m(2m-1)}{(2m+2)(2m+3)(2m+4)} \left\{ 1 - \frac{(2m-2)(2m-3)}{(2m+5)(2m+6)} \right\} z^{4} - \dots - \frac{(2m+1)2m(2m-1) \cdots 3}{(2m+2)(2m+3) \cdots (2m+(2m-1))(4m)} \times \left\{ 1 - \frac{2 \cdot 1}{(4m+1)(4m+2)} \right\} z^{2m} - \frac{(2m+1)2m \cdots 2 \cdot 1}{(2m+2)(2m+3) \cdots (4m+2)} z^{2m+2} \right].$$

In view of (8) and (7) it is now easy to see that in E we have

$$\operatorname{Re} F_{2m+1}(z) \geq F_{2m+1}(|z|) > 0.$$

Next suppose that n is an even integer, n=2m, say, and consider the function F_{2m} defined by

$$egin{split} F_{2m}(z) &= 2(1-z^2) \left[rac{2m}{2m+1} + rac{2m(2m-1)(2m-2)}{(2m+1)(2m+2)(2m+3)} z^2
ight. \ &+ \cdots + rac{2m(2m-1) \cdots 3 \cdot 2z^{2m-2}}{(2m+1)(2m+2) \cdots (2m+(2m-1))}
ight] \end{split}$$

As before, one can see that $\operatorname{Re} F_{2m}(z) > 0$ in E.

In Lemma 1, letting $g(z) = z/(1-z^2)$, a function belonging to S_t , and

$$F(z) = \left\{ egin{array}{ll} F_{2m+1}(z) & ext{if } n=2m+1 ext{ is odd,} \ F_{2m}(z) & ext{if } n=2m ext{ is even,} \end{array}
ight.$$

we conclude that for every integer $n \geq 1$, the function

$$w(z) = \frac{f(z) * zF(z)/(1-z^2)}{f(z) * z/(1-z^2)}$$

takes values in the right half-plane, that is, $\operatorname{Re} w(z) > 0$ in E.

A moderate calculation, however, shows that

$$w(z) = \frac{v_n(z, f) - v_n(-z, f)}{f(z) - f(-z)}.$$

This completes the proof of our theorem.

As observed earlier, if $f \in K$, then g(z) = (f(z) - f(-z))/2 is an odd starlike function. We conclude this paper with a theorem pertaining to g which, although not in tune with the earlier one, is of considerable interest.

THEOREM 7. If $f \in K$, then

$$g(\rho z) \prec f(z)$$

in E, where

$$g(z) = \frac{1}{2}(f(z) - f(-z))$$

and $\rho = \sqrt{2} - 1 = 0.414...$ The number ρ cannot be replaced by any larger one.

PROOF. Since
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in K$$
 and

$$g(\rho z) = z + a_3 \rho^3 z^3 + a_5 \rho^5 z^5 + \cdots,$$

the conclusion of our theorem would follow provided $\{\rho, 0, \rho^3, 0, \rho^5, \dots\}$ is a subordinating factor sequence. In view of Lemma 3 this will be true if and only if

$$\operatorname{Re}\left[1 + 2\sum_{m=0}^{\infty} \rho^{2m+1} z^{2m+1}\right] = \operatorname{Re}\left[1 + \frac{2\rho z}{1 - \rho^2 z^2}\right] > 0 \qquad (z \in E),$$

or,

$$1 - 2\rho/(1 - \rho^2) \ge 0,$$

which is true by the choice of ρ .

To prove that the number ρ is the best possible one, let us consider the function $f(z)=z/(1-z)\in K$. It is then seen that for any $0\leq \lambda\leq 1$, $g(\lambda z)=\lambda z/(1-\lambda^2z^2)$. Since $g(-\lambda)=-\lambda/(1-\lambda^2)<-1/2$ if $\lambda>\sqrt{2}-1$, from the fact that the range of f is the half-plane $\{w|\operatorname{Re} w>-1/2\}$ it follows that $g(\lambda z)$ cannot be subordinate to f in E if $\lambda>\sqrt{2}-1=\rho$.

REFERENCES

- 1. H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693.
- S. Ruscheweyh and T. B. Sheil-Small, Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture, Comment Math. Helv. 48 (1973), 119-135.

DEPARTMENT OF MATHEMATICS, PUNJABI UNIVERSITY, PATIALA, PUNJAB, INDIA 147002

PATEL MEMORIAL NATIONAL COLLEGE, RAJPURA (PB), INDIA