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LINEAR SUMS OF CERTAIN ANALYTIC FUNCTIONS
RAM SINGH AND SURINDER PAUL

ABSTRACT. Let f belong to a certain subclass of the class of functions which
are regular in the unit disc E = {2: |z| < 1}. Suppose that ¢ = ¢(f, f', f"')
and ¥ = ¥(f, f', f") are regular in E with Re¢ > 0 in E and Rey } 0 in the
whole of E. In this paper we consider the following two new types of problems:
(i) To find the ranges of the real numbers A and u such that Re(A¢+uy) > 0in
E. (ii) To determine the largest number p,0 < p < 1, such that Re(¢+ %) > 0
in |2| < p.

1. Introduction. Let A denote the class of functions f that are regular in
the unit disc E = {z: |2|] < 1} and are normalized by the conditions f(0) =
f'(0)—1 = 0. We shall denote by S the subclass of A whose members are univalent
in E. A function f belonging to S is said to be starlike of order o, 0 < a < 1, if
Re(zf'(2)/f(2)) > a, z € E, and we denote by S;(c) the class of all such functions.
S; = S¢(0) will be referred to as the class of starlike functions. Finally, we shall
denote by K the class of convex functions, consisting of those elements f € S
which satisfy the condition Re(1 + zf”(2)/f'(2)) > 0 in E. It is well known that

If f(2) = 302 panz™ and g(z) = > oo bn2™ are regular in E, then their
Hadamard product/convolution is the function denoted by f * g and defined by
the power series

(f*9)(2) Ean 2"

It is known that f x g is also regular in E.
Let f(2) = Y o>, anz" be regular in E. Then the de la Valleé Poussin mean of
f of order n, V,,(z, f), is defined by

nn-1)n-2)---2-1

n(n—1)
i+ D)n+2) - (2n)

Vn(z,f)zn +( +l)( +2)0222+--~+

Let f be regular in E and g regular and univalent in E with f(0) = g(0). We
say that f is subordinate to g in E (in symbols f < g in E) if f(E) C g(E).

A sequence {c,}?° of complex numbers is said to be a subordinating factor
sequence if, whenever f(z) = Ef;l a, 2" is regular and convex in F, we have

o0
Z cnanz™ < f(2) in E.
n=1
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In the present paper we shall mainly be concerned with the following two new
types of problems:

(a) If 6 = ¢(f, f', ) and & = (f, f, f"), where f € K or S,(1/2), such that
Re¢ > 0 in E and Re is not necessarily positive in the whole of the unit disc E,
to find the ranges of real numbers ) and u such that Re(A\¢ + uyp) > 0 in E.

(b) To find the largest number p, 0 < p < 1, such that Re(¢+¢) > 0in |z| < p.

2. Preliminary results. We shall need the following results, which we state
as lemmas.

LEMMA 1. Iff€ K andg € S, then (fxg F)/(f *g) takes values in the convex
hull of F(E) for every function F regular in E.

LEMMA 2. If f and g belong to Si(1/2), then (f xg F)/(f * g) takes values in
the convez hull of F(E) for every function F regular in E.

LEMMA 3. A sequence {c,}3° of complex numbers is a subordinating factor
sequence if and only if Re(1+23 .2 | cn2™) >0 (|2| < 1).

Lemmas 1 and 2 are due to Ruscheweyh and Sheil-Small [1] and Lemma 3 is due
to Wilf [2].

3. Theorems and their proofs. It is well known (1] that if f € S;(1/2), then
Re(f(2)/sn(2,f)) > 1/2, z € E, where s,(z, f) denotes the nth partial sum of f.
From this it follows that given f € S;(1/2) and any two real numbers A > 0 and
u > 0, with at least one of them nonzero, then we have

zf'(2) | snl(2, f)]
Re |A + >0 z€E).

SR (e )
In Theorem 1 below we prove that this result continues to hold even when y is a
suitably restricted negative or complex number.

THEOREM 1. Let f € S;(1/2) and
_ zf'(z) | sn(2f)
p=re s vutnfl].

where s, (2, f) denotes the nth partial sum of f. Then L > 0 i E of (i) A > 0,
i > 0 and at least one of them 1s nonzero, (ii) u s a complez number and A > 4|u|.
The result 1s sharp in the sense that the ranges of A and p cannot be increased.

PROOF. Case (i) being obvious, we take up the proof of (ii). Since f is given to
be in S;(1/2) and g(2) = 2/(1 - z) € K C 8;(1/2), it follows from Lemma 2 that
if we choose F(z) = A\/(1 — z) + u(1 — z™) then the function

(f*gF)(2) _ f(2)*x2F(2)/(1-2)
(f *9)(2) f(2)x2/(1-2)
_ f(@)*[2/(A=2)|[M/ (1= 2) + p(1 - 2")]
f(2)x2/(1-2)
2f'(z) | sn(2 f)
e TP IE
takes values in the convex hull of F(E).
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— - Z")]

2 A/ (L+7) = |pl(1+77)
>A/2-2lu/>0
(equality in the second line holds at z = —|z| = —r when u is negative and n is
odd).
Since (Azf'(2)/f(2) + usn(2, f)/(f(2)) takes values in the convex hull of F(E),
assertion (ii) now follows.
To prove that the ranges of A and u cannot be increased without violating the
assertion of our theorem, we consider the function fo(z) = z/(1 — 2) which belongs
to K and hence to S;(1/2). Let

o DB sz o)
L"‘Re[ ) PTG ]

+u(l - z")] (z€E).

Now, since by hypothesis, A > 4|u|, we find that, for z € E,
Re F(z) = Re [1 A

~ Re

1-2

If A > 0, u > 0 with at least one of them nonzero, then clearly Lo > 0 in E. On
the other hand if A < 0, then Lo # 0 in E whatever u may be. Finally, when A > 0
and u is negative, then it is seen that Lo > 0 in E only when (A/2 — 2|u|) > 0.
This completes the proof of our theorem.

REMARK. Since the function fo(2) also belongs to K, Theorem 1 remains sharp
within this subclass of S;(1/2).

The significance of the following theorem emerges from the fact that if f € K,
then Re(1/f'(2)) need not be positive in the whole of the unit disc.

THEOREM 2. If f € K, then for all A and p with u > 0 and A > 2u, we have
ME) | b }
Re|—F75++5=|>0 ze E).
EioRsie b
PROOF. Since f € K and the function g(z) = z/(1 — 2)? is in S, in view of
Lemma 1 we conclude that for all z € E the function w, defined by
f(2) * [2/(1 = 2)*]M(1 = 2) + u(1 — 2)?]
f(2) xz/(1 - 2)?
_M@) e
2f'(z) ~ f'(2)’
takes values in the convex hull of F(E), where F(z) = A(1 — 2) + p(1 — 2)%.
Now, since by hypothesis, A > 2u, u > 0, we find that
Re F(2) = Re[A(1 — 2) + u(1 - 2)?]
= (A—2u)(1 —rcosf) + u[(1 —r2) + 2(1 —rcos 0)?] (z=re)
> 0, z€E.

w(z) =

The assertion of Theorem 2 is now clear.
The fact that for every f € S;(1/2), Re f'(z) > 0 only in |2| < 1/v/2 = 0.707....
underlines the importance of our next theorem.
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THEOREM 3. If f € Si(1/2), then
Re [@ + f’(z)] >0

in|z| < p=V4v/2—5=081.... The number p is the best possible one.

PROOF. Consider the function
1 1
(1) h(Z) = 1—:; + (1——.2)5 (Z € E)
We first proceed to prove that Reh(z) > 0in |2| <p =V 4/2-5=081....
Letting 1/(1 — z) = Re'®, we get

1 1
< < — =
(2) T SRS (Iz|=r)
and
1+ R? — r2R?
= <1).
3) cosp= LT (<)

(1) and (3) provide
2Reh(z) = 2[Rcos ¢ + R? cos 24)
=24 (1-3r2)t+ (1 -r?)%? (t = R?)
= (t), say.

It is now readily verified that for r > /7 — 2, t; given by t; = (3r% — 1)/2(1 — r2)2
lies in the range of t (= R?) and that 9¢/dt = 0 and 8%¢/dt? > 0 at t = t;. We,
therefore, conclude that for r > /7 — 2,

min(t) = P(tr) = = f(): __r(f’)’f —U% 5,

ifr<p=+v4/2-5=0.81....

On the other hand, if r < v/7 — 2, then one can easily see that
min () =¢< 1 ) 2(2+7)

1+n2) ~ @+r?
To sum up, we have shown that

Reh(z) >0 in|z|<p= \/4\/5—5,

from which it follows that
4) Reh(pz) > 0, z€E.

Now taking g(2) = z and F(z) = ph(pz) in Lemma 2, we conclude that the
values of the function
f(2) * z[ph(p2)]

92)= 1)z

_ 1) 2lp/ (1~ p2) + /(1 = p2)"]
f(z)*2

= |12 o)

> 0.
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lie in the convex hull of F/(E). However, in view of (4) we have
Re F(z) = Reph(pz) >0 in E.
We have thus proved that

[f(pZ) +f'("z)J >0

in E and hence
Re [iii) + f’(z)] >0 in (2| <p.
If we consider the function fy(2) = 2/(1 — 2) € K C S;(1/2) then it is seen that

fO(z)“LfO( )= 1iz+(1—lz)2’

and the assertion regarding the sharpness of the number p now becomes obvious in
view of the definition of the function h.
THEOREM 4. If f € K, then

el () 7] >0

inlz| < p=(vV5—-1)/V2 =0874.... The number p cannot be replaced by any
larger one.

PROOF. Proceeding as in the prdof of the previous theoerem, one can show that
the function h, defined by
(5) h(z)=2/(1-2)-14+(1-2)? (z€E),
has the property that Reh(z) > 0 only when |z| < p = (v/5 — 1)/v2 = 0.874...,
from which it follows that
(6) Reh(pz) >0 in E.
Since the function f is given to be in K and g(z) = z/(1 — pz)? belongs to S;,
Lemma 1, in conjunction with (6), provides that the function p, defined by
f(z) * g(z)h(pz)
z) = — L —
P =T )
_ f(2) *[pz/(1 - p2)*)[2/(1 — pz) — 1 + (1 — p2)°]
f(2) * pz/(1 - p2)?
pzf ”(pz)> 1
=1+ + :
( f'(pz) f'(pz)
has positive real part in E. The desired conclusion is now obvious.
The sharpness of the number p follows from the fact that for the function fo(2) =
z/(1 — z) € K we have

HE@\ L 12
(” fé(z))+f6(z)_1—z -2

=h(z) (given by (5)),
and that Reh(z) > 0 only when |z| < p = (v/5 - 1)/V2.
We observe that the disc |2| < p = 0.874... is much larger than the disc |2| <
v/2/2 = 0.707 in which Re(1/f'(z)) > 0 for every f € K.
We omit the proof of the following theorem.
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THEOREM 5. If f € Si(1/2), then
22" (2) Zf'(Z)]
Re >0
&) f(2)
in|z| < p=18v2—11=0.56.... The number p is the best possible one.

If f € K, then it is well known that g(2) = (f(z) — f(—2))/2 is an odd function
in S; and hence Re(2/g(z)) > 0 in E. Our next theorem generalizes this latter
result.

+

THEOREM 6. Let f € K. Then for each integer n > 1 we have

(2, f) —vn(=2,f)
Re >0 ze E),
1@ = 1= (=€ F)
where vy (2, ) is the de la Valleé Poussin mean of f of order n.

PROOF. Let us first suppose that n is an odd integer, n = 2m + 1, say, and
consider the function F5,,; defined by
2m +1 (2m + 1)2m(2m — 1) 42
2m+2  (2m+2)(2m + 3)(2m +4)
(2m + 1)(2m)(2m — 1)(2m — 2)(2m — 3) 4
(2m + 2)(2m + 3)(2m + 4)(2m + 5)(2m + 6)
2m+1)(2m)---2-1 2m]

2m+2)(2m+3)---(2(2m + 1))

Obviously Fo,, 41 is regular in E (in fact it is an entire function), and we can write
it in the form

(7) Foms1(2) =2(1 - z2)

4.0 4

o [2m+1 2m+1 2m(2m — 1)
(8) Fams1(2) =2 [2m+2 T (2m+2) { B (2m+3)(2m+4)} ’
___(2m+1)2m(2m — 1) {1 _ (2m —-2)(2m - 3) } 4
(2m + 2)(2m + 3)(2m + 4) 2m+5)(2m+6) )~

2m+1)2m(2m—-1)---3
T (2m+2)(2m+3)--- (2m+ (2m — 1))(4m)

2.1 . (2m+1)2m---2-1 .
X{l_(4m+1)(4m+2)} ’ —(2m+2)(2m+3)...(4m+2)z2 +2]'

In view of (8) and (7) it is now easy to see that in E we have
ReF2m+1(z) > F2m+1(|2|) > 0.

Next suppose that n is an even integer, n = 2m, say, and consider the function
Fy,, defined by

Fom(2) = 2(1 — 27) [

2m + 2m(2m — 1)(2m — 2) 52
2m+1  (2m+1)(2m + 2)(2m + 3)
2m(2m —1)---3 - 222m2
2m+1)2m+2)---(2m+ (2m — 1))
As before, one can see that Re F,,(2) > 0in E.
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In Lemma 1, letting g(z) = 2/(1 — 22), a function belonging to S;, and
Fz) = { Fomi1(2) fn=2m+1is odd,
Fon(2) if n = 2m is even,
we conclude that for every integer n > 1, the function
2)*zF(2)/(1 — 22
o = A
takes values in the right half-plane, that is, Rew(z) > 0 in E.
A moderate calculation, however, shows that

vn(z, f) - v‘n('—z» f)

fz) = f(=2)
This completes the proof of our theorem.

As observed earlier, if f € K, then g(z) = (f(2) — f(—2))/2 is an odd starlike
function. We conclude this paper with a theorem pertaining to g which, although
not in tune with the earlier one, is of considerable intererst.

THEOREM 7. If f € K, then

w(z) =

g(pz) < f(2)
in E, where
g(2) = 3(f(2) = f(~2))
and p=+/2—1=0.414.... The number p cannot be replaced by any larger one.
PROOF. Since f(2) =2+ ) ,opan2" € K and
g(pz) = 2+ azp’z® + asp®2° + -,

the conclusion of our theorem would follow provided {p,0, p3,0, 0%, ...} is a subor-
dinating factor sequence. In view of Lemma 3 this will be true if and only if

= 2pz
Re [1+2 E pzm“zzm“] =Re [1 + T—_’;)??] >0 (z€E),
m=0
or,
1-2p/(1-p*) 20,
which is true by the choice of p.

To prove that the number p is the best possible one, let us consider the function
f(2) = z/(1—2) € K. It is then seen that for any 0 < A < 1, g(Az) = Az/(1—-A222).
Since g(—=A) = —=A/(1 — A2?) < —1/2 if A > /2 — 1, from the fact that the range of
f is the half-plane {w|Rew > —1/2} it follows that g(Az) cannot be subordinate
tofin Eif A>v2-1=p.
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