LINEAR SUMS OF CERTAIN ANALYTIC FUNCTIONS

RAM SINGH AND SURINDER PAUL

Abstract

Let f belong to a certain subclass of the class of functions which are regular in the unit disc $E=\{z:|z|<1\}$. Suppose that $\phi=\phi\left(f, f^{\prime}, f^{\prime \prime}\right)$ and $\psi=\psi\left(f, f^{\prime}, f^{\prime \prime}\right)$ are regular in E with $\operatorname{Re} \phi>0$ in E and $\operatorname{Re} \psi \ngtr 0$ in the whole of E. In this paper we consider the following two new types of problems: (i) To find the ranges of the real numbers λ and μ such that $\operatorname{Re}(\lambda \phi+\mu \psi)>0$ in E. (ii) To determine the largest number $\rho, 0<\rho<1$, such that $\operatorname{Re}(\phi+\psi)>0$ in $|z|<\rho$.

1. Introduction. Let A denote the class of functions f that are regular in the unit disc $E=\{z:|z|<1\}$ and are normalized by the conditions $f(0)=$ $f^{\prime}(0)-1=0$. We shall denote by S the subclass of A whose members are univalent in E. A function f belonging to S is said to be starlike of order $\alpha, 0 \leq \alpha<1$, if $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>\alpha, z \in E$, and we denote by $S_{t}(\alpha)$ the class of all such functions. $S_{t}=S_{t}(0)$ will be referred to as the class of starlike functions. Finally, we shall denote by K the class of convex functions, consisting of those elements $f \in S$ which satisfy the condition $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>0$ in E. It is well known that $K \subset S_{t}(1 / 2)$.

If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ are regular in E, then their Hadamard product/convolution is the function denoted by $f * g$ and defined by the power series

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

It is known that $f * g$ is also regular in E.
Let $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ be regular in E. Then the de la Valleé Poussin mean of f of order $n, V_{n}(z, f)$, is defined by

$$
V_{n}(z, f)=\frac{n}{n+1} a_{1} z+\frac{n(n-1)}{(n+1)(n+2)} a_{2} z^{2}+\cdots+\frac{n(n-1)(n-2) \cdots 2 \cdot 1}{(n+1)(n+2) \cdots(2 n)} a_{n} z^{n}
$$

Let f be regular in E and g regular and univalent in E with $f(0)=g(0)$. We say that f is subordinate to g in E (in symbols $f \prec g$ in E) if $f(E) \subset g(E)$.

A sequence $\left\{c_{n}\right\}_{1}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if, whenever $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ is regular and convex in E, we have

$$
\sum_{n=1}^{\infty} c_{n} a_{n} z^{n} \prec f(z) \quad \text { in } E
$$

Received by the editors February 26, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 30A26; Secondary 30A36, 30A42.

In the present paper we shall mainly be concerned with the following two new types of problems:
(a) If $\phi=\phi\left(f, f^{\prime}, f^{\prime \prime}\right)$ and $\psi=\psi\left(f, f^{\prime}, f^{\prime \prime}\right)$, where $f \in K$ or $S_{t}(1 / 2)$, such that $\operatorname{Re} \phi>0$ in E and $\operatorname{Re} \psi$ is not necessarily positive in the whole of the unit disc E, to find the ranges of real numbers λ and μ such that $\operatorname{Re}(\lambda \phi+\mu \psi)>0$ in E.
(b) To find the largest number $\rho, 0<\rho<1$, such that $\operatorname{Re}(\phi+\psi)>0$ in $|z|<\rho$.
2. Preliminary results. We shall need the following results, which we state as lemmas.

Lemma 1. If $f \in K$ and $g \in S_{t}$, then $(f * g F) /(f * g)$ takes values in the convex hull of $F(E)$ for every function F regular in E.

Lemma 2. If f and g belong to $S_{t}(1 / 2)$, then $(f * g F) /(f * g)$ takes values in the convex hull of $F(E)$ for every function F regular in E.

Lemma 3. A sequence $\left\{c_{n}\right\}_{1}^{\infty}$ of complex numbers is a subordinating factor sequence if and only if $\operatorname{Re}\left(1+2 \sum_{n=1}^{\infty} c_{n} z^{n}\right)>0(|z|<1)$.

Lemmas 1 and 2 are due to Ruscheweyh and Sheil-Small [1] and Lemma 3 is due to Wilf [2].
3. Theorems and their proofs. It is well known [1] that if $f \in S_{t}(1 / 2)$, then $\operatorname{Re}\left(f(z) / s_{n}(z, f)\right)>1 / 2, z \in E$, where $s_{n}(z, f)$ denotes the nth partial sum of f. From this it follows that given $f \in S_{t}(1 / 2)$ and any two real numbers $\lambda \geq 0$ and $\mu \geq 0$, with at least one of them nonzero, then we have

$$
\operatorname{Re}\left[\lambda \frac{z f^{\prime}(z)}{f(z)}+\mu \frac{s_{n}(z, f)}{f(z)}\right]>0 \quad(z \in E)
$$

In Theorem 1 below we prove that this result continues to hold even when μ is a suitably restricted negative or complex number.

Theorem 1. Let $f \in S_{t}(1 / 2)$ and

$$
L=\operatorname{Re}\left[\lambda \frac{z f^{\prime}(z)}{f(z)}+\mu \frac{s_{n}(z, f)}{f(z)}\right]
$$

where $s_{n}(z, f)$ denotes the nth partial sum of f. Then $L>0$ in E if (i) $\lambda \geq 0$, $\mu \geq 0$ and at least one of them is nonzero, (ii) μ is a complex number and $\lambda>4|\mu|$. The result is sharp in the sense that the ranges of λ and μ cannot be increased.

Proof. Case (i) being obvious, we take up the proof of (ii). Since f is given to be in $S_{t}(1 / 2)$ and $g(z)=z /(1-z) \in K \subset S_{t}(1 / 2)$, it follows from Lemma 2 that if we choose $F(z)=\lambda /(1-z)+\mu\left(1-z^{n}\right)$ then the function

$$
\begin{aligned}
\frac{(f * g F)(z)}{(f * g)(z)} & =\frac{f(z) * z F(z) /(1-z)}{f(z) * z /(1-z)} \\
& =\frac{f(z) *[z /(1-z)]\left[\lambda /(1-z)+\mu\left(1-z^{n}\right)\right]}{f(z) * z /(1-z)} \\
& =\lambda \frac{z f^{\prime}(z)}{f(z)}+\mu \frac{s_{n}(z, f)}{f(z)}
\end{aligned}
$$

takes values in the convex hull of $F(E)$.

Now, since by hypothesis, $\lambda>4|\mu|$, we find that, for $z \in E$,

$$
\begin{aligned}
\operatorname{Re} F(z) & =\operatorname{Re}\left[\frac{\lambda}{1-z}+\mu\left(1-z^{n}\right)\right] \\
& \geq \lambda /(1+r)-|\mu|\left(1+r^{n}\right) \\
& >\lambda / 2-2|\mu|>0
\end{aligned}
$$

(equality in the second line holds at $z=-|z|=-r$ when μ is negative and n is odd).

Since $\left(\lambda z f^{\prime}(z) / f(z)+\mu s_{n}(z, f) /(f(z))\right.$ takes values in the convex hull of $F(E)$, assertion (ii) now follows.

To prove that the ranges of λ and μ cannot be increased without violating the assertion of our theorem, we consider the function $f_{0}(z)=z /(1-z)$ which belongs to K and hence to $S_{t}(1 / 2)$. Let

$$
\begin{aligned}
L_{0} & =\operatorname{Re}\left[\frac{\lambda z f_{0}^{\prime}(z)}{f_{0}(z)}+\mu \frac{s_{n}\left(z, f_{0}\right)}{f_{0}(z)}\right] \\
& =\operatorname{Re}\left[\frac{\lambda}{1-z}+\mu\left(1-z^{n}\right)\right] \quad(z \in E) .
\end{aligned}
$$

If $\lambda \geq 0, \mu \geq 0$ with at least one of them nonzero, then clearly $L_{0}>0$ in E. On the other hand if $\lambda<0$, then $L_{0} \nsupseteq 0$ in E whatever μ may be. Finally, when $\lambda>0$ and μ is negative, then it is seen that $L_{0}>0$ in E only when $(\lambda / 2-2|\mu|)>0$. This completes the proof of our theorem.

REmark. Since the function $f_{0}(z)$ also belongs to K, Theorem 1 remains sharp within this subclass of $S_{t}(1 / 2)$.

The significance of the following theorem emerges from the fact that if $f \in K$, then $\operatorname{Re}\left(1 / f^{\prime}(z)\right)$ need not be positive in the whole of the unit disc.

THEOREM 2. If $f \in K$, then for all λ and μ with $\mu \geq 0$ and $\lambda>2 \mu$, we have

$$
\operatorname{Re}\left[\frac{\lambda f(z)}{z f^{\prime}(z)}+\frac{\mu}{f^{\prime}(z)}\right]>0 \quad(z \in E)
$$

Proof. Since $f \in K$ and the function $g(z)=z /(1-z)^{2}$ is in S_{t}, in view of Lemma 1 we conclude that for all $z \in E$ the function w, defined by

$$
\begin{aligned}
w(z) & =\frac{f(z) *\left[z /(1-z)^{2}\right]\left[\lambda(1-z)+\mu(1-z)^{2}\right]}{f(z) * z /(1-z)^{2}} \\
& =\frac{\lambda f(z)}{z f^{\prime}(z)}+\frac{\mu}{f^{\prime}(z)}
\end{aligned}
$$

takes values in the convex hull of $F(E)$, where $F(z)=\lambda(1-z)+\mu(1-z)^{2}$.
Now, since by hypothesis, $\lambda>2 \mu, \mu \geq 0$, we find that

$$
\begin{aligned}
\operatorname{Re} F(z) & =\operatorname{Re}\left[\lambda(1-z)+\mu(1-z)^{2}\right] \\
& =(\lambda-2 \mu)(1-r \cos \theta)+\mu\left[\left(1-r^{2}\right)+2(1-r \cos \theta)^{2}\right] \quad\left(z=r e^{i \theta}\right) \\
& >0, \quad z \in E .
\end{aligned}
$$

The assertion of Theorem 2 is now clear.
The fact that for every $f \in S_{t}(1 / 2), \operatorname{Re} f^{\prime}(z)>0$ only in $|z|<1 / \sqrt{2}=0.707 \ldots$ underlines the importance of our next theorem.

Theorem 3. If $f \in S_{t}(1 / 2)$, then

$$
\operatorname{Re}\left[\frac{f(z)}{z}+f^{\prime}(z)\right]>0
$$

in $|z|<\rho=\sqrt{4 \sqrt{2}-5} \doteqdot 0.81 \ldots$ The number ρ is the best possible one.
Proof. Consider the function

$$
\begin{equation*}
h(z)=\frac{1}{1-z}+\frac{1}{(1-z)^{2}} \quad(z \in E) \tag{1}
\end{equation*}
$$

We first proceed to prove that $\operatorname{Re} h(z)>0$ in $|z|<\rho=\sqrt{4 \sqrt{2}-5} \doteqdot 0.81 \ldots$
Letting $1 /(1-z)=R e^{i \phi}$, we get

$$
\begin{equation*}
\frac{1}{1+r} \leq R \leq \frac{1}{1-r} \quad(|z|=r) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \phi=\frac{1+R^{2}-r^{2} R^{2}}{2 R} \quad(\leq 1) \tag{3}
\end{equation*}
$$

(1) and (3) provide

$$
\begin{aligned}
2 \operatorname{Re} h(z) & =2\left[R \cos \phi+R^{2} \cos 2 \phi\right] \\
& =2+\left(1-3 r^{2}\right) t+\left(1-r^{2}\right)^{2} t^{2} \quad\left(t=R^{2}\right) \\
& =\psi(t), \text { say }
\end{aligned}
$$

It is now readily verified that for $r \geq \sqrt{7}-2, t_{1}$ given by $t_{1}=\left(3 r^{2}-1\right) / 2\left(1-r^{2}\right)^{2}$ lies in the range of $t\left(=R^{2}\right)$ and that $\partial \psi / \partial t=0$ and $\partial^{2} \psi / \partial t^{2}>0$ at $t=t_{1}$. We, therefore, conclude that for $r \geq \sqrt{7}-2$,

$$
\min \psi(t)=\psi\left(t_{1}\right)=\frac{8\left(1-r^{2}\right)^{2}-\left(3 r^{2}-1\right)^{2}}{4\left(1-r^{2}\right)^{2}}>0
$$

if $r<\rho=\sqrt{4 \sqrt{2}-5} \doteqdot 0.81 \ldots$
On the other hand, if $r<\sqrt{7}-2$, then one can easily see that

$$
\min \psi(t)=\psi\left(\frac{1}{(1+r)^{2}}\right)=\frac{2(2+r)}{(1+r)^{2}}>0
$$

To sum up, we have shown that

$$
\operatorname{Re} h(z)>0 \quad \text { in }|z|<\rho=\sqrt{4 \sqrt{2}-5}
$$

from which it follows that

$$
\begin{equation*}
\operatorname{Re} h(\rho z)>0, \quad z \in E \tag{4}
\end{equation*}
$$

Now taking $g(z)=z$ and $F(z)=\rho h(\rho z)$ in Lemma 2, we conclude that the values of the function

$$
\begin{aligned}
g(z) & =\frac{f(z) * z[\rho h(\rho z)]}{f(z) * z} \\
& =\frac{f(z) * z\left[\rho /(1-\rho z)+\rho /(1-\rho z)^{2}\right]}{f(z) * z} \\
& =\rho\left[\frac{f(\rho z)}{\rho z}+f^{\prime}(\rho z)\right]
\end{aligned}
$$

lie in the convex hull of $F(E)$. However, in view of (4) we have

$$
\operatorname{Re} F(z)=\operatorname{Re} \rho h(\rho z)>0 \quad \text { in } E .
$$

We have thus proved that

$$
\operatorname{Re}\left[\frac{f(\rho z)}{\rho z}+f^{\prime}(\rho z)\right]>0
$$

in E and hence

$$
\operatorname{Re}\left[\frac{f(z)}{z}+f^{\prime}(z)\right]>0 \quad \text { in }|z|<\rho .
$$

If we consider the function $f_{0}(z)=z /(1-z) \in K \subset S_{t}(1 / 2)$ then it is seen that

$$
\frac{f_{0}(z)}{z}+f_{0}^{\prime}(z)=\frac{1}{1-z}+\frac{1}{(1-z)^{2}}
$$

and the assertion regarding the sharpness of the number ρ now becomes obvious in view of the definition of the function h.

Theorem 4. If $f \in K$, then

$$
\operatorname{Re}\left[\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\frac{1}{f^{\prime}(z)}\right]>0
$$

in $|z|<\rho=(\sqrt{5}-1) / \sqrt{2}=0.874 \ldots$. The number ρ cannot be replaced by any larger one.

Proof. Proceeding as in the proof of the previous theoerem, one can show that the function h, defined by

$$
\begin{equation*}
h(z)=2 /(1-z)-1+(1-z)^{2} \quad(z \in E) \tag{5}
\end{equation*}
$$

has the property that $\operatorname{Re} h(z)>0$ only when $|z|<\rho=(\sqrt{5}-1) / \sqrt{2}=0.874 \ldots$, from which it follows that

$$
\begin{equation*}
\operatorname{Re} h(\rho z)>0 \quad \text { in } E . \tag{6}
\end{equation*}
$$

Since the function f is given to be in K and $g(z)=z /(1-\rho z)^{2}$ belongs to S_{t}, Lemma 1 , in conjunction with (6), provides that the function p, defined by

$$
\begin{aligned}
p(z) & =\frac{f(z) * g(z) h(\rho z)}{f(z) * g(z)} \\
& =\frac{f(z) *\left[\rho z /(1-\rho z)^{2}\right]\left[2 /(1-\rho z)-1+(1-\rho z)^{2}\right]}{f(z) * \rho z /(1-\rho z)^{2}} \\
& =\left(1+\frac{\rho z f^{\prime \prime}(\rho z)}{f^{\prime}(\rho z)}\right)+\frac{1}{f^{\prime}(\rho z)},
\end{aligned}
$$

has positive real part in E. The desired conclusion is now obvious.
The sharpness of the number ρ follows from the fact that for the function $f_{0}(z)=$ $z /(1-z) \in K$ we have

$$
\begin{aligned}
\left(1+\frac{z f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}\right)+\frac{1}{f_{0}^{\prime}(z)} & =\frac{2}{1-z}-1+(1-z)^{2} \\
& =h(z) \quad(\text { given by }(5))
\end{aligned}
$$

and that $\operatorname{Re} h(z)>0$ only when $|z|<\rho=(\sqrt{5}-1) / \sqrt{2}$.
We observe that the disc $|z|<\rho=0.874 \ldots$ is much larger than the disc $|z|<$ $\sqrt{2} / 2=0.707$ in which $\operatorname{Re}\left(1 / f^{\prime}(z)\right)>0$ for every $f \in K$.

We omit the proof of the following theorem.

Theorem 5. If $f \in S_{t}(1 / 2)$, then

$$
\operatorname{Re}\left[\frac{z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right]>0
$$

in $|z|<\rho=\sqrt{8 \sqrt{2}-11}=0.56 \ldots$. The number ρ is the best possible one.
If $f \in K$, then it is well known that $g(z)=(f(z)-f(-z)) / 2$ is an odd function in S_{t} and hence $\operatorname{Re}(z / g(z))>0$ in E. Our next theorem generalizes this latter result.

Theorem 6. Let $f \in K$. Then for each integer $n \geq 1$ we have

$$
\operatorname{Re} \frac{v_{n}(z, f)-v_{n}(-z, f)}{f(z)-f(-z)}>0 \quad(z \in E)
$$

where $v_{n}(z, f)$ is the de la Valleé Poussin mean of f of order n.
Proof. Let us first suppose that n is an odd integer, $n=2 m+1$, say, and consider the function $F_{2 m+1}$ defined by
(7) $F_{2 m+1}(z)=2\left(1-z^{2}\right)\left[\frac{2 m+1}{2 m+2}+\frac{(2 m+1) 2 m(2 m-1)}{(2 m+2)(2 m+3)(2 m+4)} z^{2}\right.$

$$
\begin{aligned}
& +\frac{(2 m+1)(2 m)(2 m-1)(2 m-2)(2 m-3)}{(2 m+2)(2 m+3)(2 m+4)(2 m+5)(2 m+6)} z^{4} \\
& \left.\quad+\cdots+\frac{(2 m+1)(2 m) \cdots 2 \cdot 1}{(2 m+2)(2 m+3) \cdots(2(2 m+1))} z^{2 m}\right]
\end{aligned}
$$

Obviously $F_{2 m+1}$ is regular in E (in fact it is an entire function), and we can write it in the form
(8) $F_{2 m+1}(z)=2\left[\frac{2 m+1}{2 m+2}-\frac{2 m+1}{(2 m+2)}\left\{1-\frac{2 m(2 m-1)}{(2 m+3)(2 m+4)}\right\} z^{2}\right.$

$$
\begin{gathered}
-\frac{(2 m+1) 2 m(2 m-1)}{(2 m+2)(2 m+3)(2 m+4)}\left\{1-\frac{(2 m-2)(2 m-3)}{(2 m+5)(2 m+6)}\right\} z^{4} \\
-\cdots-\frac{(2 m+1) 2 m(2 m-1) \cdots 3}{(2 m+2)(2 m+3) \cdots(2 m+(2 m-1))(4 m)} \\
\left.\times\left\{1-\frac{2 \cdot 1}{(4 m+1)(4 m+2)}\right\} z^{2 m}-\frac{(2 m+1) 2 m \cdots 2 \cdot 1}{(2 m+2)(2 m+3) \ldots(4 m+2)} z^{2 m+2}\right] .
\end{gathered}
$$

In view of (8) and (7) it is now easy to see that in E we have

$$
\operatorname{Re} F_{2 m+1}(z) \geq F_{2 m+1}(|z|)>0
$$

Next suppose that n is an even integer, $n=2 m$, say, and consider the function $F_{2 m}$ defined by

$$
\begin{aligned}
F_{2 m}(z)=2\left(1-z^{2}\right)[& \frac{2 m}{2 m+1}+\frac{2 m(2 m-1)(2 m-2)}{(2 m+1)(2 m+2)(2 m+3)} z^{2} \\
& \left.\quad+\cdots+\frac{2 m(2 m-1) \cdots 3 \cdot 2 z^{2 m-2}}{(2 m+1)(2 m+2) \cdots(2 m+(2 m-1))}\right]
\end{aligned}
$$

As before, one can see that $\operatorname{Re} F_{2 m}(z)>0$ in E.

In Lemma 1 , letting $g(z)=z /\left(1-z^{2}\right)$, a function belonging to S_{t}, and

$$
F(z)= \begin{cases}F_{2 m+1}(z) & \text { if } n=2 m+1 \text { is odd } \\ F_{2 m}(z) & \text { if } n=2 m \text { is even }\end{cases}
$$

we conclude that for every integer $n \geq 1$, the function

$$
w(z)=\frac{f(z) * z F(z) /\left(1-z^{2}\right)}{f(z) * z /\left(1-z^{2}\right)}
$$

takes values in the right half-plane, that is, $\operatorname{Re} w(z)>0$ in E.
A moderate calculation, however, shows that

$$
w(z)=\frac{v_{n}(z, f)-v_{n}(-z, f)}{f(z)-f(-z)}
$$

This completes the proof of our theorem.
As observed earlier, if $f \in K$, then $g(z)=(f(z)-f(-z)) / 2$ is an odd starlike function. We conclude this paper with a theorem pertaining to g which, although not in tune with the earlier one, is of considerable intererst.

Theorem 7. If $f \in K$, then

$$
g(\rho z) \prec f(z)
$$

in E, where

$$
g(z)=\frac{1}{2}(f(z)-f(-z))
$$

and $\rho=\sqrt{2}-1=0.414 \ldots$. The number ρ cannot be replaced by any larger one.
PROOF. Since $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in K$ and

$$
g(\rho z)=z+a_{3} \rho^{3} z^{3}+a_{5} \rho^{5} z^{5}+\cdots
$$

the conclusion of our theorem would follow provided $\left\{\rho, 0, \rho^{3}, 0, \rho^{5}, \ldots\right\}$ is a subordinating factor sequence. In view of Lemma 3 this will be true if and only if

$$
\operatorname{Re}\left[1+2 \sum_{m=0}^{\infty} \rho^{2 m+1} z^{2 m+1}\right]=\operatorname{Re}\left[1+\frac{2 \rho z}{1-\rho^{2} z^{2}}\right]>0 \quad(z \in E)
$$

or,

$$
1-2 \rho /\left(1-\rho^{2}\right) \geq 0
$$

which is true by the choice of ρ.
To prove that the number ρ is the best possible one, let us consider the function $f(z)=z /(1-z) \in K$. It is then seen that for any $0 \leq \lambda \leq 1, g(\lambda z)=\lambda z /\left(1-\lambda^{2} z^{2}\right)$. Since $g(-\lambda)=-\lambda /\left(1-\lambda^{2}\right)<-1 / 2$ if $\lambda>\sqrt{2}-1$, from the fact that the range of f is the half-plane $\{w \mid \operatorname{Re} w>-1 / 2\}$ it follows that $g(\lambda z)$ cannot be subordinate to f in E if $\lambda>\sqrt{2}-1=\rho$.

References

1. H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693.
2. S. Ruscheweyh and T. B. Sheil-Small, Hadamard products of schlicht functions and the PólyaSchoenberg conjecture, Comment Math. Helv. 48 (1973), 119-135.

Department of Mathematics, Punjabi University, Patiala, Punjab, India 147002

Patel Memorial national College, Rajpura (Pb), india

