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INFINITELY MANY RADIALLY SYMMETRIC SOLUTIONS TO A
SUPERLINEAR DIRICHLET PROBLEM IN A BALL

ALFONSO CASTRO AND ALEXANDRA KUREPA

ABSTRACT. In this paper we show that a radially symmetric superlinear

Dirichlet problem in a ball has infinitely many solutions. This result is ob-

tained even in cases of rapidly growing nonlinearities, that is, when the growth

of the nonlinearity surpasses the critical exponent of the Sobolev embedding

theorem. Our methods rely on the energy analysis and the phase-plane an-

gle analysis of the solutions for the associated singular ordinary differential

equation.

1. Introduction. Over the last two decades considerable progress has been

made in the study of superlinear boundary value problems, such as:

f Au + g(u) = q(x),        xeü,

[ ' ' \ u = 0, x G 6Ú,

where 0 is a bounded region in R^, A is the Laplacian operator, g: R —» R is a

continuous function, q £ L2(U), and

(1.2) lim  (g(u)/u) = oo.

The main goal has been to identify the conditions on Q,g,q under which (1.1)-

(1.2) has infinitely many solutions. Most of the results have been obtained using

variational methods. In order to get solutions of (1.1) as critical points of a certain
o

functional J defined in the Sobolev space HX(Q) (see Adams [1]), it has become

customary to assume that g satisfies the growth condition that ensures J to be

well defined. For general bounded regions, if g is odd and satisfies suitable growth

conditions, the existence of infinitely many solutions was obtained simultaneously

and independently by Bahri and Berestycki [2] and Struwe [9]. Their results were

later extended by Rabinowitz [8] and Bahri and Lions [3] . The only cases known to

us where infinitely many solutions are obtained for g growing up to, but excluding,

the limit exponent in the Sobolev space are those of Struwe [10]. In this paper we

not only get an extension of those results, but we also get cases where the growth of

g surpasses the Sobolev inequality growth. Indeed, our proofs show that for radially

symmetric solutions of (1.1) the growth condition depends on the sign of the value

of the solution at 0. Actually our results suggest that it should be sufficient to have

the growth conditions only for u > 0 or for u < 0.
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We study problem (1.1) when Q is the ball of radius T in R^, centered at the

origin, and

(1.3) q(x) = p(]\x\])

is a radially symmetric function. For the sake of simplicity of the proofs we assume,

without loss of generality, that

(1.4) p = L°°(Q), g(0) — 0, and g is strictly increasing.

In order to state our main result we introduce the following notation:

(1.5) L(k, u) = NG(ku) - ((N - 2)/2)u(g(u) + oHpHooSgnfu)),

(1.6) L±(k)=    lim   L(k,u)(u/g(u))N'2,
u—»±00

(1.7) F(m, u) = (u/g(u))N+p-x ■ G(ku) + m,

where G(u) = /0" g(v) dv, k G (0,1], p > 0, and míR.

Our main result is

THEOREM A.   Suppose g is locally Lipschitzian and (1.2)—(1.3) hold. If
(i) L(l,u) is bounded below and L+(k) = oo (respectively L-(k) = oo) for some

k S (0,1), or

(ii) F(rn,u) —> oo as u —» oo (respectively F(m,u) —> oo as u —» —oo) for any

m G R,

then (1.1) has infinitely many radially symmetric solutions with u(0) > 0 (respec-

tively u(0) <0)).

Theorem A includes the results of Struwe [10] since hypothesis (i) is satisfied

for \g(u)\ < A\u\" + B, A, B G R, 1 < u < (N + 2)/(N - 2). Not only that,
condition (i) allows the case g(u) = u(iV+2)/(iV-2) + u" for either u < 0 or u > 0.

Also, if \g(u)\ < Au°', A G R, 1 < a < N/(N - 2), then condition (ii) holds

without any growth restriction on g(u) for u < 0. Hence, cases such as g(u) =

uK — e~u (N = 2, k odd) are encompassed by hypothesis (i). These results, to the

best of our knowledge, have not been obtained before. Moreover, since our method

is not variational we do not have to use compactness arguments of Palais-Smale

type. Therefore cases such as g(u) = u ■ log(|u|), |u| > 1, satisfy the hypothesis of

Theorem A, but not the hypothesis required in the work of others (see for example

[2, (6.3); 3; 8, (pz); 10, (4)]). Another advantage of our method is that p can be

allowed to depend on (||a;[|,u, u') as long asp(||x||,tt,u') is uniformly bounded. This

is not possible when using variational arguments (see [2, 3, 8, 9, 10]).

Our proofs rely on the study of the singular initial value problem

u" + \' + g(u)=p(t),        te[0,T],

(L8) u(0)=d,

u'(0) =0,

where n — N — 1, and d is an arbitrary real number. A simple argument based on

the contraction mapping principle and Lemma 2.1 shows that problem (1.8) has a

unique solution u(t,d) on the interval [0, oo) depending continuously on d. In §2

we analyze the energy of the corresponding solutions, i.e. we analyze the function

(1.9) E(t, d) = (u'(t, d))2/2 + G(u(t, d)).
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Since radially symmetric solutions of (1.1) are the solutions of (1.8) satisfying

(1.10) u(T,d)=0,

we use the "shooting" method. In order to do so we estimate from below the value

of in. > 0 such that the solution of (1.8) satisfies

(1.11) u(t0,d) = kd,        ke(0,l).

Combining this estimate, hypotheses (1.2)—(1.3), and an argument resembling the

one used in the proof of Pohozaev's identity we show that

(1.12) lim   E(t,d) = oo     (respectively    lim   E(t,d) = oo),
d—»+oo y d—• —oo J

uniformly for t G [0,T].

The rest of the proof is based on the phase plane analysis. From (1.12) it follows

that in the (u,u') plane for d sufficiently large a continuous argument function

0(t,d) can be defined so that 9(0, d) = 0. Imitating the proof used by Castro and

Lazer [4] in §3 we show that

(1.13) lim 9(T,d) = oo.
d—>oo

Thus, by the intermediate value theorem we have the existence of infinitely many

solutions for (1.10), therefore infinitely many radially symmetric solutions for (1.1)

In a forthcoming paper we treat the jumping nonlinearity case extending the

work of Castro and Shivaji [5].

2. Energy analysis. Throughout this paper we assume that (1.4) holds. The

continuous dependence of u and u' in (t,d) can be obtained by considering the

operator

u,d)->d+ [ r~n [  sn(p(s)-g(u(s)))dsdr

Jo        Jo

in the complete metric space (C[0,£]) x [d' — e, dl + s], and showing that for each

d G R this operator defines a contraction in u.

LEMMA 2.1.   Every solution to (1.8) is defined for all t G [0, oo).

PROOF. Suppose that for some increasing sequence t„ —► t G R we have

lim (u2(tn,d) + (u'(tn,d))2) -* oo.
n—»oo

If (u'(tn,d))2 does not tend to infinity, then by the mean value theorem a new

increasing sequence t'n —* t can be found so that (u'(t'n,d))2 —► oo. Thus, without

loss of generality, we can assume (u'(tn,d))2 —► oo. Also, since (1.4) holds, we have

G > 0. Hence

(2.1) lim E(tn,d) = oo.
n—»oo

On the other hand we have

E'(t,d) = u'(t,d)p(t) - -(u'(t,d))2

< K(i,d)ll|p||oo < >/2||p||ooV^M).
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Hence

E(t,d)< (K^/msXd) + (^/2)]\p]\oct)2,

which contradicts (2.1) and thus the lemma is proven.

For k G (0,1) and d > 0 with \g(d)\ > \\p\\oo let t0 := t0(k,d) he such that

d > u(t, d) > kd for all t G [0, t0) and u(t0, d) = kd. Since we are assuming g to be

an increasing function we have

u'(t,d) = rn j rn(p(r)-g(u(r,d)))dr>(-\\p\\00-g(d))t/(n+l).
Jo

Hence, integrating over [0, £o] we obtain

(2.2) t0 > (2(n + 1)(1 - *) d/dlplto«, + g(d))f'2 .

Similar arguments show that if d < 0 and \g(d)\ > \\p\]oo then (2.2) also holds. Now

we are ready to prove

LEMMA 2.2. If L(l,u) is bounded below and for some k G (0,1), L+(k) = oo

(respectively L-(k) = oo), then

lim E(t,d) = oo     I respectively    lim   E(t,d) = oo I
d—»oo y d—* — oo j

uniformly for t G [0, T].

PROOF. Let v(x) = w(||x||), x G 0. Since u satisfies (1.8) we have

(2.3) Av + g(v)=p(]\x\\),        x€Ü,

(2.4) v(0) = d,        Vv(0) = 0.

The arguments that follow are inspired by Pohozaev's identity. Throughout the

proof c denotes various positive constants depending on (TV, ||p||oo,<7)- An elemen-

tary calculation shows that

7V-2 n   i n

(Av)(x ■ V«) = —g—||Vw||2 + J2    ZZ xJvx>v*>

i=i v^1

(2-5) 4ê(2>'<)     '
j'=i Vî=i       J Xj

(g(v) - p(\\x\\))(x -Vv)=  I Y,(X]G(v))X]     - NG(v) - p(\\x\])(x ■ Vv),

where the subindex Xk denotes the partial derivative with respect to the variable

Xk-
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Multiplying (2.3) by x ■ Vv, integrating over fi£ = {x G O; ||i|| < e), to < e < T

(see (2.2), (2.5)), and using the divergence theorem we have
'7V-2,

/Jne
\Vv\\2 - NG(v) - p(\\x\\)(x -Vv) dx

(2.6) du-     12 v3 [ ôJ2 xivl - xjgw ) - 12 vi ( 12 Xiv*< v*i )
Jen. [jml     \¿ imi J \iml

= *   12 V3    ö 12 XlVli + xjg(v)

where v = (vi ■ ■ -vn) denotes the outward unit normal to Vte at x, and we have

used the radial symmetry of v.

On the other hand, multiplying (2.3) by v and integrating over fi£ we have

(2.7) /    \\Vv\\2dx= [  (g(v)-p(\]x\\))vdx+ [    v(u-Vv)da.
Jn£ Jne Jene

Replacing (2.7) in (2.6) we obtain

L H°
(N-2)g(v)v

dx

(2.8) = /     \^v\\2+eG(v) + ^

- [   p(\\x\\)((x-Vv) +
Jns \

2

AT-

dcr

v I dx.

Thus, from (2.2), (2.8), and the assumption that L(l,u) is bounded below we have

m    ( jl)w (Nam - UL&sai)+r - lS)B < cE(£),

where S is a constant, possibly negative, independent of d.   Since, in addition,

L+(k) = oo, from (2.9) we have

lim E(t,d) = oo
d—»oo

uniformly for t G [0, T], and this proves Lemma 2.2.

LEMMA 2.3.   If for any m G R F(m,u) —» oo as u —► oo (respectively F(m,u)

—► oo as u —► — oo), then

lim E(t,d) = oo     [respectively    lim   £'(í,d) = oo
d—*oo y d—> —oo

uniformly for t G [0, T].

PROOF. From the definition of E and (1.8) we have

(t2^n+p)E(t,d))' > 2(n + p)t2{n+p)-xG(u(t,d)) - (£2("+p)+1|IpIIoo)/V

Integrating over [ío, i], we infer

(2.10) E(t,d) >T-2^+p\tl(n+p)E(to,d)+m],
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where m is a constant depending on (n,T, ||p||oo,p), and we have used the fact that

G > 0. Hence, from (2.2) and (2.10) by the hypothesis of the lemma we obtain the

proof.

3. Phase-plane analysis. Let (u(t,d),u'(t,d)) ^ (0,0) for all t G \0,t). By

defining r2(t,d) = u2(t,d) + (u'(t,d))2 we see that for d > 0 there exists a unique

continuous argument function 9(t,d), t G [0, t), such that

u(t,d) = r(t,d) cos 9(t,d),

(3.1) u'(t,d) =-r(t,d)sin6(t,d),

9(0, d) =0.

If d < 0 the argument function xl>(t,d) is given by

u(t,d) = —r(t,d)cosip(t,d),

(3.2) u'(t,d) =r(t,d)sinijj(t,d),

ip(0,d) =0.

An elementary calculation shows that

rt«      #ca\    ■ ?o<* * . (g("M)) + fu'M)-P(0)cose(t,d)
(3.3) 9 (t,d) = sin 9(t,d)-\-;—r-.

r(t,d)

From this formula follows

REMARK 3.1. There exists R such that if r(t,d) > R for all t G [0,T], and
9(i,d) = (kn/2) for some t G [0,T] and a nonnegative integer k, then 9(t,d) >

(rC7r/2) for all t > t.

PROOF OF THEOREM A. By the continuous dependence of the solutions on the

initial conditions it is sufficient to prove that

(3.4) lim 9(T,d) = oo       respectively    lim   ip(T, d) = oo
d—»oo y d—> — oo

In order to do so, we show that, given any positive integer J, there exists do such

that if d > do (respectively — d > do), then 9(T,d) > Jit (respectively ip(T,d) >

Jtt).
If xq > 0 and m(xo) := min{(ç;(a:)/a;) : |x| > Xq), then by (1.2) we have

(3.5) rn(xo) —* oo    as io -> oo.

Let

(3.6) ¿G (0,min{7r/4, T/64n}),

and r0 be such that

(3.7) SUpIIoo < r0,

(3.8) 166 + 27r/w(r0,6) < 2.T/AJ,

(3.9) w(r0,¿)>(4n/T) + (2||P||M/ro),

where w(rn, 6) = m(rn cos 6) sin2 6.

Since r(t,d) —► oo when E(t,d) —* oo, by Lemmas 2.2 and 2.3 we see that there

exists do such that if d > do, then r(t, d) > r0 for all t G [0,T]. In particular 9(t, d)

is defined for all í G [0,T].
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Suppose that t > (T/4) and 9(t,d) belongs to an interval of the form [(jir/2)

6, (.77r/2) + 6], where j is a nonnegative odd integer. From (3.3) we have

9>(t,d)> sin2t9(M) + ^(M)MM)      4nluMKM)|      »Pilco
r2(t,d) Tr2(t,d) r0

>       2        4rctan¿ _ JjpJU > 1

T r0    - 4'

where we have used (3.6), (3.7), and that g(u) ■ u > 0 since (1.4) holds.

On the other hand, if 9(t,d) belongs to an interval of the form [(jir/2) + 6,

(j + 2)(ir/2) -8] we have

(3 11) e'{t'd) - {9{u{t: d)) SÍn2 ¿)/(u(¿'d)) ~ {2n/T) " (llp|l°o/ro)

>Lo(rQ,6)/2>0

(see (3.9)).

By Remark 3.1 we see that 9(T/4,d) > 0 for all d > d0.  Now, by (3.10) and
(3.11) we infer that 9(t,d) is an increasing function of t on the interval [T/4,T].

Next we estimate 9(T,d).  Suppose that \9(T/4,d) - (jft/2)\ < 6 for some odd

positive integer j. Since by (3.10) 9(t,d) cannot remain in the interval [(jir/2) —

6, (j-k/2) + 6] longer than 8<5, there exists tx G (T/4, (T/4) + 8<S) such that

(3.12) 9(ti.d) = (jw/2) + 6.

Now, for t > ti with 9(s,d) G [(jir/2) + 6, (j + 2)(tt/2) - 8] and for all s e [tut]

from (3.11) we see that t — ti < (ir — 2S)/ui(ro,6). Thus, there exists t2 G (fi,íi +

(2(ir-26)/u(r0,6))) and

(3.13) 9(t2,d) = (j + 2)(n/2)-6.

Imitating the argument used in establishing the existence of ii, we see that there

exists Í3 G (t2,t2 + 86) such that 9(t¿,d) = (j + 2)(-k/2) + 6. Using the properties

of ¿i and t2 we obtain

T/4 < h < (T/4) + 166 + (2(tt - 2¿)/w(r0,6)),

( '    j 9(t3,d)-9(t,d) >rt.

Repeating this argument J times we see that

(3.15) 9(t,d)>Jjt

for some t € [T/4, (T/4) + J(16¿ + (2(tt - 2c5)/w(r0,«5)))]. From (3.15) using (3.8)

we get t <T. Since 9(t,d) is increasing we have proved that

(3.16) 9(T,d)>Jn.

On the other hand if \9(T/4, d) — (jn/2)\ > 6, similar arguments lead to the existence

of t G [T/4, (T/4) + J(86 + (4(tt - 26)/u(r0,6)))] such that 9(t, d) > Jit. Hence,

(3.17) 6(T,d)>Jir.

From (3.16) and (3.17) follows (3.4). Since the case d < 0 follows the identical

pattern, the theorem is proven.
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