
proceedings of the
american mathematical society
Volume 101. Number 2. Oetober 19S7

PRIMES DIVIDING CHARACTER DEGREES

AND CHARACTER ORBIT SIZES

DAVID GLUCK

Abstract. We consider an abelian group A which acts faithfully and coprimely on a

solvable group G. We show that some A -orbit on Irr(G) must have cardinality

divisible by almost half the primes in ir(A). As a corollary, we improve a recent

result of I. M. Isaacs concerning the maximum number of primes dividing any one

character degree of a solvable group.

A recent result of I. M. Isaacs [5, Corollary 4.3] relates the maximum number of

primes dividing any one irreducible character degree of a solvable group G to the

number of primes dividing all the character degrees of G taken together. Here we

considerably strengthen the bound in [5, Corollary 4.3] by proving a result on

character orbit sizes in coprime actions.

We consider an abelian group A which acts faithfully and coprimely on a solvable

group G. We show that some ,4-orbit on Irr(G) must have cardinality divisible by

almost half the primes in tr(A). Our approach roughly parallels that of [6]. This

paper and [5] contain new applications of the results and methods of [6, 7,1, 2].

I would like to thank I. M. Isaacs for bringing this problem to my attention.

Our notation is largely standard. If a group G acts on a set ß and a e ß, we

denote by Orbc(w) the G-orbit of w. If G<H and H also acts on ß, we say that

h G H moves OrbG(co) if uh £ OrbG(w). All groups considered in this paper are

finite and solvable.

We now state our main results.

Theorem 1. Let A act faithfully on G with (\A\, \G\) = 1 and A abelian. Then

\ir(A)\ < 2\ir(OrbA(x))\ + 8 for some x G Irr(G).

Corollary 1. Let G be solvable. Let s = max{|7r(x(l))|: x G lrr(G)} and ¡et

P = l«<nx«in(oX(l)H Then p < s2 + 10*.

Proof. Using Theorem 1 above, we get a stronger version of [5, Theorem 4.1] in

which part (a) is replaced by \p(G) - p(N) - a\ < 2(j - \a\) + 8. This leads to a

stronger version of [5, Corollary 4.3] in which |p(G)| ^ s + T,s¡Zq(2(s - i) + 8) = s2

+ 10s. Since |p(G)| in [5] is called p in our paper, this completes the proof.
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The next proposition shows that the bound in Theorem 1 is close to best possible.

Proposition 1. Let m be a positive integer. There exist groups A and G satisfying

the hypotheses of Theorem! with \it(A)\ = 2m and it (OrbA(x)) < m for all x G Irr(G).

Proof. For 1 < i < m, choose odd primes p¡ and q¡ subject to the following

conditions. Let e¡ and /, denote the order of 2 mod p¡ and q¡ respectively.

(1) min(/>„<7,) > !•>• •'«'-' for i > 1,

(2) q, = 2 (modeJle2f2 ■ ■ ■ <?,_,/,„,) for i > 1,

(3) /, < e, for all i.

For each i set n¡ = f¡p¡. Clearly 2f> — 1 s 0 mod q¡. Since

(2"' - l)/(2¿ - 1) = 1 + V< + ■ • • +2('<-1)/<,

it follows that (2"' - l)/(2/( - 1) = p¡ # 0 mod ?,, By (3) above, 2"- - 1 = 2fip' - 1

e 2f> - 1 # 0 mod /?,,

Let F, be elementary abelian of order 2"\ Let C, be cyclic of order 2"' - 1. Let P¡

be cyclic of order pt and let F, act on C, = GF(2"' - l)x as the subgroup of order p¡

in Gal(GF(2"')/GF(2)). Let H¡ = (P¡C,.)^ be the corresponding subgroup of the

affine semilinear group over GF(2"'). Let Q¡ be the Sylow <7rsubgroup of C,. The

preceding paragraph implies that [P,.,ÔJ = 1 and Q¡ > 1. Let C; = (9, x ^,- Let

G, = Fc,^ and A¡ = P,ô,. Then ^4, acts faithfully on G, and the preceding paragraph

shows that (| A¡ \, |G,|) = 1.

Let x G Itt(H¡) and let X be an irreducible constituent of Xi/- If A = 1, then x(l)

divides p¡. If À # 1, then \IH(X): V¡\ = />„ and every character in lrr(IH(X)\X) has

degree 1 (see [4, 6.17 and 6.20]). Hence x(l) = 10/1 l-^/l- ln either case, at most one

prime in 77(^4,) divides x(l).

Let yj/ G Irr(G,). Since Gj<H¡, lOrb^ (\p)\ divides an irreducible character degree

of H¡. Hence \ir(OtbAi(iP))\ < 1.

Now let G = G, X • • • XG„, and let A = Ay X • ■ • xAm act componentwise on

G. Clearly A acts faithfully on G. To show that (|j4|, |G|) = 1, it suffices, by

induction, to show that (\Am\, |G,|) = (\A¡\, \Gm\) = 1 for ;' < m. We already know

that (\Am\, \Gm\) = 1. Suppose i < m. If (\Am\, \G,\) > 1, then (\Am\, \Q) = (\Am\,

2Pi/i — i) > i. Since /, divides q¡ — 1, this contradicts condition (1) in the first

paragraph. If (\At\, \Gm\) > 1 for i < m, then (\A,\, \Cm\) = (\A,\, 2*-^- - 1) > 1.

Then ordr(2) | pmfm, where r = p¡ or r = q:. Since ord,.(2) divides r — 1 and r < pm,

we have ordr(2) \fm and so ordr(2) \(qm - 1), contrary to condition (2) in the first

paragraph. Hence A and G satisfy the hypothesis of Theorem 1.

Let \p = <|/, X • • • Xt//m be an arbitrary character in Irr(G). As above, we may

choose Sie{Pi,Qi) so that 5, fixes \p¡. Then S1X---XSm fixes ^, so

177(0^(1^)) | < m. This completes the proof.

We proceed to prove Theorem 1. We will use the proof of [6, Theorem 3.3] as a

rough guide in the proof of Proposition 3 below.

Lemma 1. Let A act on G with A abelian and (\A\, \G\) = 1. Let Ap denote the

p-Sylow subgroup of A. Let N and M be A-invariant normal subgroups of G, with

[A , G] =% M and N < M. Let X be an irreducible character of N and suppose Ap
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moves  OrbM(A).   Then Ap  moves  Orbc(A).   Similarly,   if v G N and Ap  moves

Orbw(i;), thenAp moves Orbc(u).

Proof. Suppose Ap stabilizes Orbc(A). Then the semidirect product ApG acts on

Orbc(A) with G acting transitively. By Glauberman's Lemma [4, Lemma 13.8], A

fixes   some   \p g Orbc(A).   Then   Ap   fixes   À   for   some   g G G.   Since   G =

CG(Ap)[Ap,G] = Cc(Ap)M, we may assume that  g g M.  Hence A    stabilizes

Orbw(A).

The second assertion is proved similarly.

Lemma 2.  Let G =£ 1 be solvable with every normal abelian subgroup cyclic. Let

pl,...,pn   be  the distinct prime divisors of   |F(G)|   and let Z < Z(F(G))  with

\Z\ = P\ ' ' ' P„- Let D = CG(Z). Then there exist E, T<G with

(i) ET = F(G) andE n T = Z.

(ii) Each Sylow subgroup of T is cyclic, dihedral, semidihedral or quaternion.

(iii) T has a cyclic subgroup U with \T: U\ < 2 and U < G.

(iv) Each Sylow subgroup of E is cyclic of prime order or extraspecial of prime

exponent or exponent 4.

(v) G is nilpotent if and only ifG= T.

(vi) T = CG(E) andF(G) = CD(E/Z).

(vii) Each Sylow subgroup of E/Z is elementary abelian and is a completely

reducible D/F(G)-module.

Proof. This is [7, Corollary 2.4].

Lemma 3. Let G, E, U, and Z be as in Lemma 2. Let V be a faithful F[EU \-module

for a finite field F. Let W # 0 be an irreducible U-submodule of V and let e = \E : Z|1/2.

Then dim V = me dim W for an integer m.

Proof. This is [7, Lemma 2.5],

Lemma 4. Let E<H with \H:E\= p andp \ \E\. Let Z = Z(E), P G Sylp(H),

and let V be a finite-dimensional F[H]-module for a field F. Assume that E/Z is an

abelian q-group for a prime q, P £ CH(E), and VE is a faithful, completely reducible

and homogeneous module. Then dimCv(P) < (dimF)/2 if p is odd.

Proof. This is part of [6, Lemma 1.7].

Lemma 5. Let V + 0 be a faithful and completely reducible F[G]-module for a field

F and a solvable group G. Then \G\ < |F|9/4.

Proof. This is a slightly weaker version of [7, Theorem 3.1].

Proposition 2. Let A act on G with (\A\, \G\) = 1 and A cyclic of squarefree order.

Suppose that [Ap,G/F(G)] is a nonidentity abelian group for all p in tr(A). Then A

has a faithful orbit on Irr(G).

Proof. Let H = G/F(G). Then [A, H] = YlplE„(A)[Ap, H] is contained in F(H).

Let W = [A, H]/$([A, H]), so that IF is a direct product of elementary abelian

^-groups for primes q dividing \H\. Write W — W1 X • • • X Wk, each W¡ an irreduc-

ible ^4-module. For 1 < ; < k, let 1 ¥= X,. e Irr(IF,). Let A = A, X • ■ • X Xk. Since
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(\A\, \H\) = 1, A acts faithfully on [A, H] and hence on W. For each ;', Wi is a

faithful irreducible module for the cyclic group A/CA(W¡). Hence A, is moved by Ap

for every p g ^(A/C^W^). Thus A lies in a faithful A -orbit on Irr(IF) <

lrr([A, H]). We now apply Lemma 1 with A, H, [A, H], [A, H] in place of A, G, M, N

and conclude that Orbc(A) is moved by Ap for every p G 77(^4). Let x e lrr(H\X).

Then x lies in a faithful A -orbit on \rr(H) < Irr(G).

Proposition 3. Let it0 = {2,3,5,7,11,13,17,31}. Let A be cyclic of squarefree

■n^-order. Let A act on G with (\A\, \G\) = 1 and [Ap,G] nonabelian for all p G tt(A).

Let V be an abelian group which is a direct product of completely reducible AG-modules

over various finite fields. Suppose (\A\, \V\) = 1 and A G acts faithfully on V. Then

there exists v g V such that Orbc(j;) is moved by every Ap.

Proof. We proceed by induction on \G\ + \V\. Set tt(A) = 77.

First suppose V is not an irreducible AG-module. Write V = Vl X • • • X Vk, with

each Vi an irreducible ^IG-module. Let G, = G/CG(V/) for 1 < i < k. Let 77, = {p

g 77: [A , Gj] is nonabelian}. For each p g 77, [Ap,G] is isomorphic to a subgroup

of [A , (?iJ X ••• X[A ,Gk]. Hence [A ,G¡] is nonabelian for some i, and so

77 = 77, U • • • Utrk. We apply the induction hypothesis to G, with Y\p^„ Ap, G,, Vi

in place of A,G, V. We obtain v¡ G V¡ such that Orbc(í;;) is moved by A for all

p g 77,. Then Orb^u,, ..., vk) is moved by Ap for all p g 77.

We now assume that V is an irreducible ,4G-module. We may apply Lemma 1

with A, GV, [A, G]V, V in place of A, G, M, N and conclude that it suffices to find

v g V such that Orb^ C](i;) is moved by A for all p g 77. By the inductive

hypothesis we may then assume that G = [A,G]. It follows that On(AG) — AG,

since otherwise a proper factor group of G would be centralized by A, contrary to

G = [A,G].

Suppose that V is imprimitive. Let V = F, ffi • • • © Vt be an imprimitivity

decomposition for the action of A G on V. We may partition {1,..., t} into blocks

Bj, 1 <y < s, and set c/ = £i6flF,, so that AG permutes the set {UX,...,US)

primitively. Let C be the kernel of the permutation action of AG on the U,. Since

y4G = On(AG), we have A ^ C. By [1, Theorem 1] we may choose S < {l,2,...,s}

so that the stabilizer in AG of ¿ZjsSUj is C. Let U = £ GSl/. Let trl = {p G 77:

^><C}.
Let .4, = n.e„ ^4„ so that C = AX(C n G). All the irreducible constituents of

VCnG are /4G-conjugate. Thus if Kj denotes the kernel of C on IL, then C\X^AGKX

= 1 for each j g S. Let /? g 77,. Since all /7-Sylow subgroups of C are conjugate

under G n C, it follows that [/l^G n C] charG n C, and so [^p,G n C]'charG n

C. The last two sentences imply that [Ap,G C\ C]' £ Kj for any 7 g S. Hence

Ap £ Kj for p g 77[ and 7 G 5. Since A"y<lC, it follows that Kj < G n C and

[^^(G Pi C)/^] is nonabelian for p g 77, and y G 5.

For y g 5, we may now apply the inductive hypothesis with Ax, (G n C)/Kj, Uj

in place of A, G, V. We obtain u¡ g LZ such that OrbGnc(«7) is moved by Ap for all

p G 77j. Let w = Y.jESur If p G 77 — 77, and F G Syl (AG), then the choice of S

insures that   F does not centralize  u.  If F g Sy\p(AG) and  /? g 77,, then the
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definition of Uj implies that P does not centralize u. For every p G 77, the last two

sentences show that A fixes no element in Orbc(w). If Ap stabilized OrbG(«), then

Glauberman's Lemma applied to the action of ApG on OrbG(u) would yield a

contradiction. Hence A   moves Orbc(tt) as desired.

We may now assume that F is a primitive ylG-module. If F(^4G) ^ G, then some

Ap < F(AG), and so Ap<AG, contrary to [Ap,G] * 1. Hence F(^IG) < G, and so

F(AG) = F(G). Set F(AG) = F. Now AG can play the role of "G" in Lemma 2.

Let T, U < A G be as in the conclusion of Lemma 2. Suppose T =£ U. Then every

2'-element of AG centralizes 02(T), so AG/CAG(02(T)) is a nonidentity 2-group,

contradicting On(AG) = AG. Thus T = U is cyclic. Let Z, D, and E be as in

Lemma 2, so that F = CD(E/Z) and each Sylow subgroup of E/Z is a completely

reducible D/F-module.

Fix /? g 77. Since AG/D is abelian, [^,G] < D n G. Thus [^,G] = [^, ^,G]

= [/4 , D n G]. Suppose [Ap, E/Z] = 1. Since D and C^F/Z) are normal in

AG, we have [^,G] = [Ap, D n G] < CD(E/Z) = F Hence

[¿,,G>] = [¿,.¿,.<?] = [¿,,f] = [¿,,*][¿,,r] < ZF= F,

contrary to the hypotheses of Proposition 3. Hence [A ,E/Z] + 1. Let FL be a

Sylow subgroup of F with [Ap, El/El n Z] # 1. We apply Lemma 4 to

ApEx, Ev Ap, V in place of H, E, P, V. We conclude that \Cv(Ap)\ < \V\^2.

Let F be an irreducible F-submodule of V. By Lemma 3, |y| = |JF|me, where

e2 = |F:Z| and m is a positive integer. Moreover IF is a faithful irreducible

F-submodule of Y, so that \T\ divides \W\ - 1.

Now \G n D\ = \G n D:F||F|. By Lemmas 2 and 5, and an obvious subdirect

product argument, \D:F\ < |F:Z|9/4 = <?9/2. We have |G n D| < <?9/2e2|F| =

|F|e13/2. Since [^, G] = [Ap, G n Z>], we have 0^6) < X,(G n Í), so

\Sylp(AG)\ < |G n £)| < eu/2\T\. Hence

E     |cK(/»)|<|r|eu/a|cK(^)|<|r|*u/2|K|1/2.
PeSyy/fG)

We will show that the following inequality holds:

M E \CV(P)\<P-2\V\.
PeSylp{AC)

Suppose (*) is false, so that p2\T\eu/2 > \V\1/2 > \W\e/2.

If [Ap, Z] # 1, then p divides |Aut Z\ and so p \(s — 1) for some prime divisor s

of |Z|. Since Z = T D E, we have s\e and s < |F| < |W|. Since p > 17 and

/>|(s - 1), it follows that s > 47. Since /> < s < |F| < \W\, we have \W\3eu/2 >

\W\e/2, so that eu/2 > \w\(e/1)~3 > 48<e/2)~3. Hence e < 20, contrary to s > 47

and s I e.

Thus we assume [.4 , Z] = 1. Let e = n¡q"' for distinct primes q¡. Since

[Ap, E/Z] =£ 1 and Ap < /J), p divides |Sp(2«;, <7,)| for some /'. Hence p\q2"'' - 1

for some m¡ with 1 < m, < «,. Thus />|<7,m' + 1 or p\q"h - 1, where q"''\e- ll

follows that /?«£<? + 1. Since |F| < |IF|, we have (e + 1)V3/2 > \W\(e/2)-\ Since

\W\ > 3, we have e < 70.



224 DAVID GLUCK

If m¡> 1, our hypothesis that p <£ 770 implies that q™> > 70. Hence e > 70, a

contradiction. Thus m¡ = 1 and p <£ 770 implies that g, > 37. Since q¡ divides \T\

and \T\ divides |IF| - 1 and |IF| is a prime power, we must have |IF| > 83. Hence

(e + l)2e13/2 > 83(e/2)_1. As above, this implies that e < 20, contrary to qAe and

q, > 37.
We conclude that (*) holds for each p g 77. Since Hpevp'2 is less than 1, it

follows that there exists v g F such that y is centralized by no />Sylow subgroup of

AG for any /? g 77. Then no ^4 fixes any element in Orbc((;). By Glauberman's

Lemma, each Ap moves Orbc(t;).

Proposition 4. Let A be cyclic of squarefree lÎQ-order. Let N be an A-invariant

normal abelian subgroup of G which is a direct product of completely reducible

AG-modules. Suppose N = CAG(N). For each p G ir(A), suppose that [Ap,G/N] is

either nonabelian or trivial. Then A has a faithful orbit on Irr(G).

Proof. Let F = lrr(N), 77 = 77(,4), 77, = {p g 77: [Ap, G/N] is nonabelian}, and

772 = 77 - ttj. Let Ax be the Hall 77,-subgroup of A.

Then Av G/N, and N satisfy the hypotheses of Proposition 3. Hence we may

choose v g F so that Orbc(f) is moved byAp for all p g 77,.

Write V = F, X • • ■ X Vk, a direct product of irreducible /4G-modules. We may

assume that each component vi of v is not 1. For each p g 772, we may choose

i g {1,..., k} such that V¡ is not centralized by Ap. Since [Ap, G] < N = Ç^F),

the centralizer in V¡ of y4 is an ,4 G-submodule of V¡, and hence is trivial. Thus Ap

moves v¡, and so Ap moves v.

We think of v as a linear character A of N, Then OrbA,(A) = {A} is not

A ̂ -invariant for any p g 772. By Lemma 1 with A,G, N, N in place of ^4,G, M, N,

we conclude that Orbc(A) is moved by Ap for all p g 772. By the second paragraph,

Orbc(A) is moved by A for all p g 77. Hence if x e Irr(G|A), then x lies in a

faithful /(-orbit.

Proof of Theorem 1. We may assume A is cyclic of squarefree order. The

hypotheses of Theorem 1 imply that F(AG) = F(G). Since G = \Ap,G]CG(Ap) for

each p g -n(A), it follows that A acts faithfully on G/<S>(AG). Thus we may assume

that $(AG) = 1 and hence that F(G) = F(AG) is a direct product of completely

reducible A G-modules (see [3, III, Satz 4.5]).

Partition tt(A) = 77 as follows. Let 77, = 77 n 770, 772 = {p g 77: /j G 770 and

[/I , G/F(G)] is abelian and nontrivial}, 773 = 77 — 77, — 772, and 7r4 be the larger of

772 and 773. Let A4 be the Hall 774-subgroup of A. By Proposition 3 or Proposition 4

applied to A4 and G, we may conclude that AA has a faithful orbit on Irr(G). Since

|77(/4)| < 2|77(^44)| + 8, this completes the proof.
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