PRIMES DIVIDING CHARACTER DEGREES AND CHARACTER ORBIT SIZES

DAVID GLUCK

Abstract

We consider an abelian group A which acts faithfully and coprimely on a solvable group G. We show that some A-orbit on $\operatorname{Irr}(G)$ must have cardinality divisible by almost half the primes in $\pi(A)$. As a corollary, we improve a recent result of I. M. Isaacs concerning the maximum number of primes dividing any one character degree of a solvable group.

A recent result of I. M. Isaacs [5, Corollary 4.3] relates the maximum number of primes dividing any one irreducible character degree of a solvable group G to the number of primes dividing all the character degrees of G taken together. Here we considerably strengthen the bound in [5, Corollary 4.3] by proving a result on character orbit sizes in coprime actions.

We consider an abelian group A which acts faithfully and coprimely on a solvable group G. We show that some A-orbit on $\operatorname{Irr}(G)$ must have cardinality divisible by almost half the primes in $\pi(A)$. Our approach roughly parallels that of [6]. This paper and [5] contain new applications of the results and methods of $[6,7,1,2]$.

I would like to thank I. M. Isaacs for bringing this problem to my attention.
Our notation is largely standard. If a group G acts on a set Ω and $\omega \in \Omega$, we denote by $\operatorname{Orb}_{G}(\omega)$ the G-orbit of ω. If $G \triangleleft H$ and H also acts on Ω, we say that $h \in H$ moves $\operatorname{Orb}_{G}(\omega)$ if $\omega^{h} \notin \operatorname{Orb}_{G}(\omega)$. All groups considered in this paper are finite and solvable.

We now state our main results.
Theorem 1. Let A act faithfully on G with $(|A|,|G|)=1$ and A abelian. Then $|\pi(A)| \leqslant 2\left|\pi\left(\operatorname{Orb}_{A}(\chi)\right)\right|+8$ for some $\chi \in \operatorname{Irr}(G)$.

Corollary 1. Let G be solvable. Let $s=\max \{|\pi(\chi(1))|: \chi \in \operatorname{Irr}(G)\}$ and let $\rho=\left|\pi\left(\prod_{\chi \in \operatorname{Irr}(G)} \chi(1)\right)\right|$. Then $\rho \leqslant s^{2}+10 s$.

Proof. Using Theorem 1 above, we get a stronger version of [5, Theorem 4.1] in which part (a) is replaced by $|\rho(G)-\rho(N)-\sigma| \leqslant 2(s-|\sigma|)+8$. This leads to a stronger version of $\left[5\right.$, Corollary 4.3] in which $|\rho(G)| \leqslant s+\sum_{i=0}^{s-1}(2(s-i)+8)=s^{2}$ $+10 s$. Since $|\rho(G)|$ in $[5]$ is called ρ in our paper, this completes the proof.

[^0]The next proposition shows that the bound in Theorem 1 is close to best possible.
Proposition 1. Let m be a positive integer. There exist groups A and G satisfying the hypotheses of Theorem 1 with $|\pi(A)|=2 m$ and $\pi\left(\operatorname{Orb}_{A}(\chi)\right) \leqslant m$ for all $\chi \in \operatorname{Irr}(G)$.

Proof. For $1 \leqslant i \leqslant m$, choose odd primes p_{i} and q_{i} subject to the following conditions. Let e_{i} and f_{i} denote the order of $2 \bmod p_{i}$ and q_{i} respectively.
(1) $\min \left(p_{i}, q_{i}\right)>2^{p_{i-1} q_{i-1}}$ for $i>1$,
(2) $q_{i} \equiv 2\left(\bmod e_{1} f_{1} e_{2} f_{2} \cdots e_{i-1} f_{i-1}\right)$ for $i>1$,
(3) $f_{i}<e_{i}$ for all i.

For each i set $n_{i}=f_{i} p_{i}$. Clearly $2^{f_{i}}-1 \equiv 0 \bmod q_{i}$. Since

$$
\left(2^{n_{i}}-1\right) /\left(2^{f_{i}}-1\right) \equiv 1+2^{f_{i}}+\cdots+2^{\left(p_{i}-1\right) f_{i}}
$$

it follows that $\left(2^{n_{i}}-1\right) /\left(2^{f_{i}}-1\right) \equiv p_{i} \not \equiv 0 \bmod q_{i}$. By (3) above, $2^{n_{i}}-1=2^{f_{i} p_{i}}-1$ $\equiv 2^{f_{i}}-1 \not \equiv 0 \bmod p_{i}$.

Let V_{i} be elementary abelian of order $2^{n_{i}}$. Let C_{i} be cyclic of order $2^{n_{i}}-1$. Let P_{i} be cyclic of order p_{i} and let P_{i} act on $C_{i} \cong \mathrm{GF}\left(2^{n_{i}}-1\right)^{\times}$as the subgroup of order p_{i} in $\operatorname{Gal}\left(\mathrm{GF}\left(2^{n_{i}}\right) / \mathrm{GF}(2)\right)$. Let $H_{i}=\left(P_{i} C_{i}\right) V_{i}$ be the corresponding subgroup of the affine semilinear group over $\operatorname{GF}\left(2^{n_{i}}\right)$. Let Q_{i} be the Sylow q_{i}-subgroup of C_{i}. The preceding paragraph implies that $\left[P_{i}, Q_{i}\right]=1$ and $Q_{i}>1$. Let $C_{i}=Q_{i} \times R_{i}$. Let $G_{i}=R_{i} V_{i}$ and $A_{i}=P_{i} Q_{i}$. Then A_{i} acts faithfully on G_{i} and the preceding paragraph shows that $\left(\left|A_{i}\right|,\left|G_{i}\right|\right)=1$.

Let $\chi \in \operatorname{Irr}\left(H_{i}\right)$ and let λ be an irreducible constituent of $\chi_{\nu_{i}}$ If $\lambda=1$, then $\chi(1)$ divides p_{i}. If $\lambda \neq 1$, then $\left|I_{H_{i}}(\lambda): V_{i}\right|=p_{i}$, and every character in $\operatorname{Irr}\left(I_{H_{i}}(\lambda) \mid \lambda\right)$ has degree 1 (see $[4,6.17$ and 6.20$]$). Hence $\chi(1)=\left|Q_{i}\right|\left|R_{i}\right|$. In either case, at most one prime in $\pi\left(A_{i}\right)$ divides $\chi(1)$.

Let $\psi \in \operatorname{Irr}\left(G_{i}\right)$. Since $G_{i} \triangleleft H_{i},\left|\operatorname{Orb}_{A_{i}}(\psi)\right|$ divides an irreducible character degree of H_{i}. Hence $\left|\pi\left(\mathrm{Orb}_{A_{i}}(\psi)\right)\right| \leqslant 1$.

Now let $G=G_{1} \times \cdots \times G_{m}$ and let $A=A_{1} \times \cdots \times A_{m}$ act componentwise on G. Clearly A acts faithfully on G. To show that $(|A|,|G|)=1$, it suffices, by induction, to show that $\left(\left|A_{m}\right|,\left|G_{i}\right|\right)=\left(\left|A_{i}\right|,\left|G_{m}\right|\right)=1$ for $i \leqslant m$. We already know that $\left(\left|A_{m}\right|,\left|G_{m}\right|\right)=1$. Suppose $i<m$. If $\left(\left|A_{m}\right|,\left|G_{i}\right|\right)>1$, then $\left(\left|A_{m}\right|,\left|C_{i}\right|\right)=\left(\left|A_{m}\right|\right.$, $\left.2^{p_{i} f_{i}}-1\right)>1$. Since f_{i} divides $q_{i}-1$, this contradicts condition (1) in the first paragraph. If $\left(\left|A_{i}\right|,\left|G_{m}\right|\right)>1$ for $i<m$, then $\left(\left|A_{i}\right|,\left|C_{m}\right|\right)=\left(\left|A_{i}\right|, 2^{p_{m} f_{m}}-1\right)>1$. Then ord ${ }_{r}(2) \mid p_{m} f_{m}$, where $r=p_{i}$ or $r=q_{i}$. Since ord ${ }_{r}(2)$ divides $r-1$ and $r<p_{m}$, we have ord ${ }_{r}(2) \mid f_{m}$ and so ord ${ }_{r}(2) \mid\left(q_{m}-1\right)$, contrary to condition (2) in the first paragraph. Hence A and G satisfy the hypothesis of Theorem 1.

Let $\psi=\psi_{1} \times \cdots \times \psi_{m}$ be an arbitrary character in $\operatorname{Irr}(G)$. As above, we may choose $S_{i} \in\left\{P_{i}, Q_{i}\right\}$ so that S_{i} fixes ψ_{i}. Then $S_{1} \times \cdots \times S_{m}$ fixes ψ, so $\left|\pi\left(\operatorname{Orb}_{A}(\psi)\right)\right| \leqslant m$. This completes the proof.

We proceed to prove Theorem 1. We will use the proof of [6, Theorem 3.3] as a rough guide in the proof of Proposition 3 below.

Lemma 1. Let A act on G with A abelian and $(|A|,|G|)=1$. Let A_{p} denote the p-Sylow subgroup of A. Let N and M be A-invariant normal subgroups of G, with $\left[A_{p}, G\right] \leqslant M$ and $N \leqslant M$. Let λ be an irreducible character of N and suppose A_{p}
moves $\operatorname{Orb}_{M}(\lambda)$. Then A_{p} moves $\operatorname{Orb}_{G}(\lambda)$. Similarly, if $v \in N$ and A_{p} moves $\mathrm{Orb}_{M}(v)$, then A_{p} moves $\operatorname{Orb}_{G}(v)$.

Proof. Suppose A_{p} stabilizes $\operatorname{Orb}_{G}(\lambda)$. Then the semidirect product $A_{p} G$ acts on $\operatorname{Orb}_{G}(\lambda)$ with G acting transitively. By Glauberman's Lemma [4, Lemma 13.8], A_{p} fixes some $\psi \in \operatorname{Orb}_{G}(\lambda)$. Then A_{p}^{g} fixes λ for some $g \in G$. Since $G=$ $C_{G}\left(A_{p}\right)\left[A_{p}, G\right]=C_{G}\left(A_{p}\right) M$, we may assume that $g \in M$. Hence A_{p} stabilizes $\operatorname{Orb}_{M}(\lambda)$.

The second assertion is proved similarly.
Lemma 2. Let $G \neq 1$ be solvable with every normal abelian subgroup cyclic. Let p_{1}, \ldots, p_{n} be the distinct prime divisors of $|F(G)|$ and let $Z \leqslant Z(F(G))$ with $|Z|=p_{1} \cdots p_{n}$. Let $D=C_{G}(Z)$. Then there exist $E, T \triangleleft G$ with
(i) $E T=F(G)$ and $E \cap T=Z$.
(ii) Each Sylow subgroup of T is cyclic, dihedral, semidihedral or quaternion.
(iii) T has a cyclic subgroup U with $|T: U| \leqslant 2$ and $U \triangleleft G$.
(iv) Each Sylow subgroup of E is cyclic of prime order or extraspecial of prime exponent or exponent 4.
(v) G is nilpotent if and only if $G=T$.
(vi) $T=C_{G}(E)$ and $F(G)=C_{D}(E / Z)$.
(vii) Each Sylow subgroup of E / Z is elementary abelian and is a completely reducible $D / F(G)$-module.

Proof. This is [7, Corollary 2.4].
Lemma 3. Let G, E, U, and Z be as in Lemma 2. Let V be a faithful $F[E U]$-module for a finite field F. Let $W \neq 0$ be an irreducible U-submodule of V and let $e=|E: Z|^{1 / 2}$. Then $\operatorname{dim} V=m e \operatorname{dim} W$ for an integer m.

Proof. This is [7, Lemma 2.5].
Lemma 4. Let $E \triangleleft H$ with $|H: E|=p$ and $p+|E|$. Let $Z=Z(E), P \in \operatorname{Syl}_{p}(H)$, and let V be a finite-dimensional $F[H]$-module for a field F. Assume that E / Z is an abelian q-group for a prime $q, P \nless C_{H}(E)$, and V_{E} is a faithful, completely reducible and homogeneous module. Then $\operatorname{dim} C_{V}(P) \leqslant(\operatorname{dim} V) / 2$ if p is odd.

Proof. This is part of [6, Lemma 1.7].
Lemma 5. Let $V \neq 0$ be a faithful and completely reducible $F[G]$-module for a field F and a solvable group G. Then $|G| \leqslant|V|^{9 / 4}$.

Proof. This is a slightly weaker version of [7, Theorem 3.1].
Proposition 2. Let A act on G with $(|A|,|G|)=1$ and A cyclic of squarefree order. Suppose that $\left[A_{p}, G / F(G)\right]$ is a nonidentity abelian group for all p in $\pi(A)$. Then A has a faithful orbit on $\operatorname{Irr}(G)$.

Proof. Let $H=G / F(G)$. Then $[A, H]=\prod_{p \in \pi(\mathcal{A})}\left[A_{p}, H\right]$ is contained in $F(H)$. Let $W=[A, H] / \Phi([A, H])$, so that W is a direct product of elementary abelian q-groups for primes q dividing $|H|$. Write $W=W_{1} \times \cdots \times W_{k}$, each W_{i} an irreducible A-module. For $1 \leqslant i \leqslant k$, let $1 \neq \lambda_{i} \in \operatorname{Irr}\left(W_{i}\right)$. Let $\lambda=\lambda_{1} \times \cdots \times \lambda_{k}$. Since
$(|A|,|H|)=1, A$ acts faithfully on $[A, H]$ and hence on W. For each i, W_{i} is a faithful irreducible module for the cyclic group $A / C_{A}\left(W_{i}\right)$. Hence λ_{i} is moved by A_{p} for every $p \in \pi\left(A / C_{A}\left(W_{i}\right)\right.$). Thus λ lies in a faithful A-orbit on $\operatorname{Irr}(W) \leqslant$ $\operatorname{Irr}([A, H])$. We now apply Lemma 1 with $A, H,[A, H],[A, H]$ in place of A, G, M, N and conclude that $\operatorname{Orb}_{G}(\lambda)$ is moved by A_{p} for every $p \in \pi(A)$. Let $\chi \in \operatorname{Irr}(H \mid \lambda)$. Then χ lies in a faithful A-orbit on $\operatorname{Irr}(H) \leqslant \operatorname{Irr}(G)$.

Proposition 3. Let $\pi_{0}=\{2,3,5,7,11,13,17,31\}$. Let A be cyclic of squarefree π_{0}^{\prime}-order. Let A act on G with $(|A|,|G|)=1$ and $\left[A_{p}, G\right]$ nonabelian for all $p \in \pi(A)$. Let V be an abelian group which is a direct product of completely reducible $A G$-modules over various finite fields. Suppose $(|A|,|V|)=1$ and $A G$ acts faithfully on V. Then there exists $v \in V$ such that $\operatorname{Orb}_{G}(v)$ is moved by every A_{p}.

Proof. We proceed by induction on $|G|+|V|$. Set $\pi(A)=\pi$.
First suppose V is not an irreducible $A G$-module. Write $V=V_{1} \times \cdots \times V_{k}$, with each V_{i} an irreducible $A G$-module. Let $\bar{G}_{i}=G / C_{G}\left(V_{i}\right)$ for $1 \leqslant i \leqslant k$. Let $\pi_{i}=\{p$ $\in \pi:\left[A_{p}, \bar{G}_{i}\right]$ is nonabelian $\}$. For each $p \in \pi,\left[A_{p}, G\right]$ is isomorphic to a subgroup of $\left[A_{p}, \bar{G}_{1}\right] \times \cdots \times\left[A_{p}, \bar{G}_{k}\right]$. Hence $\left[A_{p}, \bar{G}_{i}\right]$ is nonabelian for some i, and so $\pi=\pi_{1} \cup \cdots \cup \pi_{k}$. We apply the induction hypothesis to \bar{G}_{i} with $\Pi_{p \in \pi_{i}} A_{p}, \bar{G}_{i}, V_{i}$ in place of A, G, V. We obtain $v_{i} \in V_{i}$ such that $\operatorname{Orb}_{G}\left(v_{i}\right)$ is moved by A_{p} for all $p \in \pi_{i}$. Then $\operatorname{Orb}_{G}\left(v_{1}, \ldots, v_{k}\right)$ is moved by A_{p} for all $p \in \pi$.

We now assume that V is an irreducible $A G$-module. We may apply Lemma 1 with $A, G V,[A, G] V, V$ in place of A, G, M, N and conclude that it suffices to find $v \in V$ such that $\operatorname{Orb}_{[A, G]}(v)$ is moved by A_{p} for all $p \in \pi$. By the inductive hypothesis we may then assume that $G=[A, G]$. It follows that $O^{\pi^{\prime}}(A G)=A G$, since otherwise a proper factor group of G would be centralized by A, contrary to $G=[A, G]$.

Suppose that V is imprimitive. Let $V=V_{1} \oplus \cdots \oplus V_{t}$ be an imprimitivity decomposition for the action of $A G$ on V. We may partition $\{1, \ldots, t\}$ into blocks $B_{j}, 1 \leqslant j \leqslant s$, and set $U_{j}=\sum_{i \in B_{j}} V_{i}$, so that $A G$ permutes the set $\left\{U_{1}, \ldots, U_{s}\right\}$ primitively. Let C be the kernel of the permutation action of $A G$ on the U_{j}. Since $A G=O^{\pi^{\prime}}(A G)$, we have $A \nless C$. By $[1$, Theorem 1] we may choose $S \leqslant\{1,2, \ldots, s\}$ so that the stabilizer in $A G$ of $\sum_{j \in S} U_{j}$ is C. Let $U=\sum_{j \in S} U_{j}$. Let $\pi_{1}=\{p \in \pi$: $\left.A_{p} \leqslant C\right\}$.

Let $A_{1}=\prod_{p \in \pi_{1}} A_{p}$ so that $C=A_{1}(C \cap G)$. All the irreducible constituents of $V_{C \cap G}$ are $A G$-conjugate. Thus if K_{j} denotes the kernel of C on U_{j}, then $\bigcap_{x \in A G} K_{j}^{x}$ $=1$ for each $j \in S$. Let $p \in \pi_{1}$. Since all p-Sylow subgroups of C are conjugate under $G \cap C$, it follows that $\left[A_{p}, G \cap C\right] \operatorname{char} G \cap C$, and so $\left[A_{p}, G \cap C\right]^{\prime} \operatorname{char} G \cap$ C. The last two sentences imply that $\left[A_{p}, G \cap C\right]^{\prime} 太 K_{j}$ for any $j \in S$. Hence $A_{p} \nless K_{j}$ for $p \in \pi_{1}$ and $j \in S$. Since $K_{j} \triangleleft C$, it follows that $K_{j} \leqslant G \cap C$ and [$\left.A_{p},(G \cap C) / K_{j}\right]$ is nonabelian for $p \in \pi_{1}$ and $j \in S$.

For $j \in S$, we may now apply the inductive hypothesis with $A_{1},(G \cap C) / K_{j}, U_{j}$ in place of A, G, V. We obtain $u_{j} \in U_{j}$ such that $\operatorname{Orb}_{G \cap C}\left(u_{j}\right)$ is moved by A_{p} for all $p \in \pi_{1}$. Let $u=\sum_{j \in S} u_{j}$. If $p \in \pi-\pi_{1}$ and $P \in \operatorname{Syl}_{p}(A G)$, then the choice of S insures that P does not centralize u. If $P \in \operatorname{Syl}_{p}(A G)$ and $p \in \pi_{1}$, then the
definition of u_{j} implies that P does not centralize u. For every $p \in \pi$, the last two sentences show that A_{p} fixes no element in $\operatorname{Orb}_{G}(u)$. If A_{p} stabilized $\operatorname{Orb}_{G}(u)$, then Glauberman's Lemma applied to the action of $A_{p} G$ on $\operatorname{Orb}_{G}(u)$ would yield a contradiction. Hence A_{p} moves $\mathrm{Orb}_{G}(u)$ as desired.

We may now assume that V is a primitive $A G$-module. If $F(A G) \nless G$, then some $A_{p} \leqslant F(A G)$, and so $A_{p} \triangleleft A G$, contrary to $\left[A_{p}, G\right] \neq 1$. Hence $F(A G) \leqslant G$, and so $F(A G)=F(G)$. Set $F(A G)=F$. Now $A G$ can play the role of " G " in Lemma 2. Let $T, U \leqslant A G$ be as in the conclusion of Lemma 2. Suppose $T \neq U$. Then every 2'-element of $A G$ centralizes $O_{2}(T)$, so $A G / C_{A G}\left(O_{2}(T)\right)$ is a nonidentity 2-group, contradicting $O^{\pi^{\prime}}(A G)=A G$. Thus $T=U$ is cyclic. Let Z, D, and E be as in Lemma 2, so that $F=C_{D}(E / Z)$ and each Sylow subgroup of E / Z is a completely reducible D / F-module.

Fix $p \in \pi$. Since $A G / D$ is abelian, $\left[A_{p}, G\right] \leqslant D \cap G$. Thus $\left[A_{p}, G\right]=\left[A_{p}, A_{p}, G\right]$ $=\left[A_{p}, D \cap G\right]$. Suppose $\left[A_{p}, E / Z\right]=1$. Since D and $C_{A G}(E / Z)$ are normal in $A G$, we have $\left[A_{p}, G\right]=\left[A_{p}, D \cap G\right] \leqslant C_{D}(E / Z)=F$. Hence

$$
\left[A_{p}, G\right]=\left[A_{p}, A_{p}, G\right]=\left[A_{p}, F\right]=\left[A_{p}, E\right]\left[A_{p}, T\right] \leqslant Z T=T
$$

contrary to the hypotheses of Proposition 3. Hence $\left[A_{p}, E / Z\right] \neq 1$. Let E_{1} be a Sylow subgroup of E with $\left[A_{p}, E_{1} / E_{1} \cap Z\right] \neq 1$. We apply Lemma 4 to $A_{p} E_{1}, E_{1}, A_{p}, V$ in place of H, E, P, V. We conclude that $\left|C_{V}\left(A_{p}\right)\right| \leqslant|V|^{1 / 2}$.

Let Y be an irreducible F-submodule of V. By Lemma 3, $|Y|=|W|^{\text {me }}$, where $e^{2}=|E: Z|$ and m is a positive integer. Moreover W is a faithful irreducible T-submodule of Y, so that $|T|$ divides $|W|-1$.

Now $|G \cap D|=|G \cap D: F||F|$. By Lemmas 2 and 5, and an obvious subdirect product argument, $|D: F| \leqslant|E: Z|^{9 / 4}=e^{9 / 2}$. We have $|G \cap D| \leqslant e^{9 / 2} e^{2}|T|=$ $|T| e^{13 / 2}$. Since $\left[A_{p}, G\right]=\left[A_{p}, G \cap D\right]$, we have $O^{p^{\prime}}(A G) \leqslant A_{p}(G \cap D)$, so $\left|\operatorname{Syl}_{p}(A G)\right| \leqslant|G \cap D| \leqslant e^{13 / 2}|T|$. Hence

$$
\sum_{P \in \operatorname{Syl}_{p}(A G)}\left|C_{V}(P)\right| \leqslant|T| e^{13 / 2}\left|C_{V}\left(A_{p}\right)\right| \leqslant|T| e^{13 / 2}|V|^{1 / 2}
$$

We will show that the following inequality holds:

$$
\begin{equation*}
\sum_{P \in \operatorname{Syl}_{p}(A G)}\left|C_{V}(P)\right| \leqslant p^{-2}|V| . \tag{*}
\end{equation*}
$$

Suppose (*) is false, so that $p^{2}|T| e^{13 / 2}>|V|^{1 / 2} \geqslant|W|^{e / 2}$.
If $\left[A_{p}, Z\right] \neq 1$, then p divides \mid Aut $Z \mid$ and so $p \mid(s-1)$ for some prime divisor s of $|Z|$. Since $Z=T \cap E$, we have $s \mid e$ and $s \leqslant|T|<|W|$. Since $p>17$ and $p \mid(s-1)$, it follows that $s \geqslant 47$. Since $p<s \leqslant|T|<|W|$, we have $|W|^{3} e^{13 / 2}>$ $|W|^{e / 2}$, so that $e^{13 / 2}>|W|^{(e / 2)-3}>48^{(e / 2)-3}$. Hence $e<20$, contrary to $s \geqslant 47$ and $s \mid e$.

Thus we assume $\left[A_{p}, Z\right]=1$. Let $e=\prod_{i} q_{i}^{n_{i}}$ for distinct primes q_{i}. Since $\left[A_{p}, E / Z\right] \neq 1$ and $A_{p} \leqslant D, p$ divides $\left|\operatorname{Sp}\left(2 n_{i}, q_{i}\right)\right|$ for some i. Hence $p \mid q_{i}^{2 m_{i}}-1$ for some m_{i} with $1 \leqslant m_{i} \leqslant n_{i}$. Thus $p \mid q_{i}^{m_{i}}+1$ or $p \mid q_{i}^{m_{i}-1}$, where $q_{i}^{m_{i}} \mid e$. It follows that $p \leqslant e+1$. Since $|T|<|W|$, we have $(e+1)^{2} e^{13 / 2}>|W|^{(e / 2)-1}$. Since $|W| \geqslant 3$, we have $e<70$.

If $m_{i}>1$, our hypothesis that $p \notin \pi_{0}$ implies that $q_{i}^{m_{i}}>70$. Hence $e>70$, a contradiction. Thus $m_{i}=1$ and $p \notin \pi_{0}$ implies that $q_{i} \geqslant 37$. Since q_{i} divides $|T|$ and $|T|$ divides $|W|-1$ and $|W|$ is a prime power, we must have $|W| \geqslant 83$. Hence $(e+1)^{2} e^{13 / 2}>83^{(e / 2)-1}$. As above, this implies that $e<20$, contrary to $q_{i} \mid e$ and $q_{i} \geqslant 37$.

We conclude that ($*$) holds for each $p \in \pi$. Since $\sum_{p \in \pi} p^{-2}$ is less than 1 , it follows that there exists $v \in V$ such that v is centralized by no p-Sylow subgroup of $A G$ for any $p \in \pi$. Then no A_{p} fixes any element in $\operatorname{Orb}_{G}(v)$. By Glauberman's Lemma, each A_{p} moves $\operatorname{Orb}_{G}(v)$.

Proposition 4. Let A be cyclic of squarefree π_{0}^{\prime}-order. Let N be an A-invariant normal abelian subgroup of G which is a direct product of completely reducible $A G$-modules. Suppose $N=C_{A G}(N)$. For each $p \in \pi(A)$, suppose that $\left[A_{p}, G / N\right]$ is either nonabelian or trivial. Then A has a faithful orbit on $\operatorname{Irr}(G)$.

Proof. Let $V=\operatorname{Irr}(N), \pi=\pi(A), \pi_{1}=\left\{p \in \pi:\left[A_{p}, G / N\right]\right.$ is nonabelian $\}$, and $\pi_{2}=\pi-\pi_{1}$. Let A_{1} be the Hall π_{1}-subgroup of A.

Then $A_{1}, G / N$, and N satisfy the hypotheses of Proposition 3. Hence we may choose $v \in V$ so that $\operatorname{Orb}_{G}(v)$ is moved by A_{p} for all $p \in \pi_{1}$.

Write $V=V_{1} \times \cdots \times V_{k}$, a direct product of irreducible $A G$-modules. We may assume that each component v_{i} of v is not 1 . For each $p \in \pi_{2}$, we may choose $i \in\{1, \ldots, k\}$ such that V_{i} is not centralized by A_{p}. Since $\left[A_{p}, G\right] \leqslant N=C_{A G}(V)$, the centralizer in V_{i} of A_{p} is an $A G$-submodule of V_{i}, and hence is trivial. Thus A_{p} moves v_{i}, and so A_{p} moves v.

We think of v as a linear character λ of N. Then $\operatorname{Orb}_{N}(\lambda)=\{\lambda\}$ is not A_{p}-invariant for any $p \in \pi_{2}$. By Lemma 1 with A, G, N, N in place of A, G, M, N, we conclude that $\operatorname{Orb}_{G}(\lambda)$ is moved by A_{p} for all $p \in \pi_{2}$. By the second paragraph, $\operatorname{Orb}_{G}(\lambda)$ is moved by A_{p} for all $p \in \pi$. Hence if $\chi \in \operatorname{Irr}(G \mid \lambda)$, then χ lies in a faithful A-orbit.

Proof of Theorem 1. We may assume A is cyclic of squarefree order. The hypotheses of Theorem 1 imply that $F(A G)=F(G)$. Since $G=\left[A_{p}, G\right] C_{G}\left(A_{p}\right)$ for each $p \in \pi(A)$, it follows that A acts faithfully on $G / \Phi(A G)$. Thus we may assume that $\Phi(A G)=1$ and hence that $F(G)=F(A G)$ is a direct product of completely reducible $A G$-modules (see [3, III, Satz 4.5]).

Partition $\pi(A)=\pi$ as follows. Let $\pi_{1}=\pi \cap \pi_{0}, \pi_{2}=\left\{p \in \pi: p \notin \pi_{0}\right.$ and [$\left.A_{p}, G / F(G)\right]$ is abelian and nontrivial $\}, \pi_{3}=\pi-\pi_{1}-\pi_{2}$, and π_{4} be the larger of π_{2} and π_{3}. Let A_{4} be the Hall π_{4}-subgroup of A. By Proposition 3 or Proposition 4 applied to A_{4} and G, we may conclude that A_{4} has a faithful orbit on $\operatorname{Irr}(G)$. Since $|\pi(A)| \leqslant 2\left|\pi\left(A_{4}\right)\right|+8$, this completes the proof.

References

[^1]3. B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin, 1967.
4. I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.
5. \qquad , Solvable group character degrees and sets of primes, J. Algebra 104 (1986), 209-230.
6. T. R. Wolf, Defect groups and character heights in blocks of solvable groups, J. Algebra 72 (1981), 183-209.
7. \qquad , Solvable and nilpotent subgroups of GL(n, q^{m}), Canad. J. Math. 34 (1982), 1097-1111.

Department of Mathematics, Wayne State University, Detroit, Michigan 48202

[^0]: Received by the editors November 13, 1985 and, in revised form, August 30, 1986. Presented on July 7, 1986 to the A.M.S. Summer Conference on Representation Theory of Finite Groups, Arcata, California. 1980 Mathematics Subject Classification (1985 Revision). Primary 20 C 15.

[^1]: 1. D. Gluck, Trivial set-stabilizers in finite permutation groups, Canad. J. Math. 35 (1983), 59-67.
 2. D. Gluck and T. R. Wolf, Defect groups and character heights in blocks of solvable groups. II, J. Algebra 87 (1984), 222-246.
