PRIMES DIVIDING CHARACTER DEGREES AND CHARACTER ORBIT SIZES

DAVID GLUCK

ABSTRACT. We consider an abelian group A which acts faithfully and coprimely on a solvable group G. We show that some A-orbit on Irr(G) must have cardinality divisible by almost half the primes in $\pi(A)$. As a corollary, we improve a recent result of I. M. Isaacs concerning the maximum number of primes dividing any one character degree of a solvable group.

A recent result of I. M. Isaacs [5, Corollary 4.3] relates the maximum number of primes dividing any one irreducible character degree of a solvable group G to the number of primes dividing all the character degrees of G taken together. Here we considerably strengthen the bound in [5, Corollary 4.3] by proving a result on character orbit sizes in coprime actions.

We consider an abelian group A which acts faithfully and coprimely on a solvable group G. We show that some A-orbit on Irr(G) must have cardinality divisible by almost half the primes in $\pi(A)$. Our approach roughly parallels that of [6]. This paper and [5] contain new applications of the results and methods of [6, 7, 1, 2].

I would like to thank I. M. Isaacs for bringing this problem to my attention.

Our notation is largely standard. If a group G acts on a set Ω and $\omega \in \Omega$, we denote by $\operatorname{Orb}_G(\omega)$ the G-orbit of ω . If $G \triangleleft H$ and H also acts on Ω , we say that $h \in H$ moves $\operatorname{Orb}_G(\omega)$ if $\omega^h \notin \operatorname{Orb}_G(\omega)$. All groups considered in this paper are finite and solvable.

We now state our main results.

THEOREM 1. Let A act faithfully on G with (|A|, |G|) = 1 and A abelian. Then $|\pi(A)| \leq 2|\pi(\operatorname{Orb}_A(\chi))| + 8$ for some $\chi \in \operatorname{Irr}(G)$.

COROLLARY 1. Let G be solvable. Let $s = \max\{|\pi(\chi(1))|: \chi \in Irr(G)\}$ and let $\rho = |\pi(\prod_{\chi \in Irr(G)} \chi(1))|$. Then $\rho \leq s^2 + 10s$.

PROOF. Using Theorem 1 above, we get a stronger version of [5, Theorem 4.1] in which part (a) is replaced by $|\rho(G) - \rho(N) - \sigma| \le 2(s - |\sigma|) + 8$. This leads to a stronger version of [5, Corollary 4.3] in which $|\rho(G)| \le s + \sum_{i=0}^{s-1} (2(s - i) + 8) = s^2 + 10s$. Since $|\rho(G)|$ in [5] is called ρ in our paper, this completes the proof.

©1987 American Mathematical Society 0002-9939/87 \$1.00 + \$.25 per page

Received by the editors November 13, 1985 and, in revised form, August 30, 1986. Presented on July 7, 1986 to the A.M.S. Summer Conference on Representation Theory of Finite Groups, Arcata, California. 1980 *Mathematics Subject Classification* (1985 *Revision*). Primary 20C15.

The next proposition shows that the bound in Theorem 1 is close to best possible.

PROPOSITION 1. Let *m* be a positive integer. There exist groups *A* and *G* satisfying the hypotheses of Theorem 1 with $|\pi(A)| = 2m$ and $\pi(\operatorname{Orb}_A(\chi)) \leq m$ for all $\chi \in \operatorname{Irr}(G)$.

PROOF. For $1 \le i \le m$, choose odd primes p_i and q_i subject to the following conditions. Let e_i and f_i denote the order of 2 mod p_i and q_i respectively.

(1) min(p_i, q_i) > $2^{p_{i-1}q_{i-1}}$ for i > 1,

(2) $q_i \equiv 2 \pmod{e_1 f_1 e_2 f_2 \cdots e_{i-1} f_{i-1}}$ for i > 1,

(3)
$$f_i < e_i$$
 for all *i*.

For each *i* set $n_i = f_i p_i$. Clearly $2^{f_i} - 1 \equiv 0 \mod q_i$. Since

$$(2^{n_i}-1)/(2^{f_i}-1) \equiv 1+2^{f_i}+\cdots+2^{(p_i-1)f_i},$$

it follows that $(2^{n_i} - 1)/(2^{f_i} - 1) \equiv p_i \neq 0 \mod q_i$. By (3) above, $2^{n_i} - 1 = 2^{f_i p_i} - 1 \equiv 2^{f_i} - 1 \equiv 2^{f_i} - 1 \equiv 2^{f_i} - 1 \neq 0 \mod p_i$.

Let V_i be elementary abelian of order 2^{n_i} . Let C_i be cyclic of order $2^{n_i} - 1$. Let P_i be cyclic of order p_i and let P_i act on $C_i \cong GF(2^{n_i} - 1)^{\times}$ as the subgroup of order p_i in Gal(GF(2^{n_i})/GF(2)). Let $H_i = (P_iC_i)V_i$ be the corresponding subgroup of the affine semilinear group over GF(2^{n_i}). Let Q_i be the Sylow q_i -subgroup of C_i . The preceding paragraph implies that $[P_i, Q_i] = 1$ and $Q_i > 1$. Let $C_i = Q_i \times R_i$. Let $G_i = R_i V_i$ and $A_i = P_i Q_i$. Then A_i acts faithfully on G_i and the preceding paragraph shows that $(|A_i|, |G_i|) = 1$.

Let $\chi \in \operatorname{Irr}(H_i)$ and let λ be an irreducible constituent of χ_{V_i} . If $\lambda = 1$, then $\chi(1)$ divides p_i . If $\lambda \neq 1$, then $|I_{H_i}(\lambda)$: $V_i| = p_i$, and every character in $\operatorname{Irr}(I_{H_i}(\lambda)|\lambda)$ has degree 1 (see [4, 6.17 and 6.20]). Hence $\chi(1) = |Q_i| |R_i|$. In either case, at most one prime in $\pi(A_i)$ divides $\chi(1)$.

Let $\psi \in \operatorname{Irr}(G_i)$. Since $G_i \triangleleft H_i$, $|\operatorname{Orb}_{A_i}(\psi)|$ divides an irreducible character degree of H_i . Hence $|\pi(\operatorname{Orb}_{A_i}(\psi))| \leq 1$.

Now let $G = G_1 \times \cdots \times G_m$ and let $A = A_1 \times \cdots \times A_m$ act componentwise on G. Clearly A acts faithfully on G. To show that (|A|, |G|) = 1, it suffices, by induction, to show that $(|A_m|, |G_i|) = (|A_i|, |G_m|) = 1$ for $i \leq m$. We already know that $(|A_m|, |G_m|) = 1$. Suppose i < m. If $(|A_m|, |G_i|) > 1$, then $(|A_m|, |C_i|) = (|A_m|, 2^{p_i f_i} - 1) > 1$. Since f_i divides $q_i - 1$, this contradicts condition (1) in the first paragraph. If $(|A_i|, |G_m|) > 1$ for i < m, then $(|A_i|, |C_m|) = (|A_i|, 2^{p_m f_m} - 1) > 1$. Then $\operatorname{ord}_r(2) | p_m f_m$, where $r = p_i$ or $r = q_i$. Since $\operatorname{ord}_r(2)$ divides r - 1 and $r < p_m$, we have $\operatorname{ord}_r(2) | f_m$ and so $\operatorname{ord}_r(2) | (q_m - 1)$, contrary to condition (2) in the first paragraph. Hence A and G satisfy the hypothesis of Theorem 1.

Let $\psi = \psi_1 \times \cdots \times \psi_m$ be an arbitrary character in Irr(G). As above, we may choose $S_i \in \{P_i, Q_i\}$ so that S_i fixes ψ_i . Then $S_1 \times \cdots \times S_m$ fixes ψ , so $|\pi(\operatorname{Orb}_A(\psi))| \leq m$. This completes the proof.

We proceed to prove Theorem 1. We will use the proof of [6, Theorem 3.3] as a rough guide in the proof of Proposition 3 below.

LEMMA 1. Let A act on G with A abelian and (|A|, |G|) = 1. Let A_p denote the p-Sylow subgroup of A. Let N and M be A-invariant normal subgroups of G, with $[A_p, G] \leq M$ and $N \leq M$. Let λ be an irreducible character of N and suppose A_p

moves $\operatorname{Orb}_{\mathcal{M}}(\lambda)$. Then A_p moves $\operatorname{Orb}_{\mathcal{G}}(\lambda)$. Similarly, if $v \in N$ and A_p moves $\operatorname{Orb}_{\mathcal{M}}(v)$, then A_p moves $\operatorname{Orb}_{\mathcal{G}}(v)$.

PROOF. Suppose A_p stabilizes $\operatorname{Orb}_G(\lambda)$. Then the semidirect product A_pG acts on $\operatorname{Orb}_G(\lambda)$ with G acting transitively. By Glauberman's Lemma [4, Lemma 13.8], A_p fixes some $\psi \in \operatorname{Orb}_G(\lambda)$. Then A_p^g fixes λ for some $g \in G$. Since $G = C_G(A_p)[A_p, G] = C_G(A_p)M$, we may assume that $g \in M$. Hence A_p stabilizes $\operatorname{Orb}_M(\lambda)$.

The second assertion is proved similarly.

LEMMA 2. Let $G \neq 1$ be solvable with every normal abelian subgroup cyclic. Let p_1, \ldots, p_n be the distinct prime divisors of |F(G)| and let $Z \leq Z(F(G))$ with $|Z| = p_1 \cdots p_n$. Let $D = C_G(Z)$. Then there exist $E, T \triangleleft G$ with

(i) ET = F(G) and $E \cap T = Z$.

(ii) Each Sylow subgroup of T is cyclic, dihedral, semidihedral or quaternion.

(iii) T has a cyclic subgroup U with $|T:U| \leq 2$ and $U \triangleleft G$.

(iv) Each Sylow subgroup of E is cyclic of prime order or extraspecial of prime exponent or exponent 4.

(v) G is nilpotent if and only if G = T.

(vi) $T = C_G(E)$ and $F(G) = C_D(E/Z)$.

(vii) Each Sylow subgroup of E/Z is elementary abelian and is a completely reducible D/F(G)-module.

PROOF. This is [7, Corollary 2.4].

LEMMA 3. Let G, E, U, and Z be as in Lemma 2. Let V be a faithful F[EU]-module for a finite field F. Let $W \neq 0$ be an irreducible U-submodule of V and let $e = |E:Z|^{1/2}$. Then dim $V = me \dim W$ for an integer m.

PROOF. This is [7, Lemma 2.5].

LEMMA 4. Let $E \triangleleft H$ with |H: E| = p and p + |E|. Let Z = Z(E), $P \in Syl_p(H)$, and let V be a finite-dimensional F[H]-module for a field F. Assume that E/Z is an abelian q-group for a prime q, $P \leq C_H(E)$, and V_E is a faithful, completely reducible and homogeneous module. Then dim $C_V(P) \leq (\dim V)/2$ if p is odd.

PROOF. This is part of [6, Lemma 1.7].

LEMMA 5. Let $V \neq 0$ be a faithful and completely reducible F[G]-module for a field F and a solvable group G. Then $|G| \leq |V|^{9/4}$.

PROOF. This is a slightly weaker version of [7, Theorem 3.1].

PROPOSITION 2. Let A act on G with (|A|, |G|) = 1 and A cyclic of squarefree order. Suppose that $[A_p, G/F(G)]$ is a nonidentity abelian group for all p in $\pi(A)$. Then A has a faithful orbit on Irr(G).

PROOF. Let H = G/F(G). Then $[A, H] = \prod_{p \in \pi(A)} [A_p, H]$ is contained in F(H). Let $W = [A, H]/\Phi([A, H])$, so that W is a direct product of elementary abelian q-groups for primes q dividing |H|. Write $W = W_1 \times \cdots \times W_k$, each W_i an irreducible A-module. For $1 \le i \le k$, let $1 \ne \lambda_i \in \operatorname{Irr}(W_i)$. Let $\lambda = \lambda_1 \times \cdots \times \lambda_k$. Since (|A|, |H|) = 1, A acts faithfully on [A, H] and hence on W. For each i, W_i is a faithful irreducible module for the cyclic group $A/C_A(W_i)$. Hence λ_i is moved by A_p for every $p \in \pi(A/C_A(W_i))$. Thus λ lies in a faithful A-orbit on $\operatorname{Irr}(W) \leq \operatorname{Irr}([A, H])$. We now apply Lemma 1 with A, H, [A, H], [A, H] in place of A, G, M, N and conclude that $\operatorname{Orb}_G(\lambda)$ is moved by A_p for every $p \in \pi(A)$. Let $\chi \in \operatorname{Irr}(H|\lambda)$. Then χ lies in a faithful A-orbit on $\operatorname{Irr}(W) \leq \operatorname{Irr}(G)$.

PROPOSITION 3. Let $\pi_0 = \{2, 3, 5, 7, 11, 13, 17, 31\}$. Let A be cyclic of squarefree π'_0 -order. Let A act on G with (|A|, |G|) = 1 and $[A_p, G]$ nonabelian for all $p \in \pi(A)$. Let V be an abelian group which is a direct product of completely reducible AG-modules over various finite fields. Suppose (|A|, |V|) = 1 and AG acts faithfully on V. Then there exists $v \in V$ such that $Orb_G(v)$ is moved by every A_p .

PROOF. We proceed by induction on |G| + |V|. Set $\pi(A) = \pi$.

First suppose V is not an irreducible AG-module. Write $V = V_1 \times \cdots \times V_k$, with each V_i an irreducible AG-module. Let $\overline{G}_i = G/C_G(V_i)$ for $1 \le i \le k$. Let $\pi_i = \{p \in \pi: [A_p, \overline{G}_i] \text{ is nonabelian}\}$. For each $p \in \pi, [A_p, G]$ is isomorphic to a subgroup of $[A_p, \overline{G}_1] \times \cdots \times [A_p, \overline{G}_k]$. Hence $[A_p, \overline{G}_i]$ is nonabelian for some *i*, and so $\pi = \pi_1 \cup \cdots \cup \pi_k$. We apply the induction hypothesis to \overline{G}_i with $\prod_{p \in \pi_i} A_p, \overline{G}_i, V_i$ in place of A, G, V. We obtain $v_i \in V_i$ such that $\operatorname{Orb}_G(v_i)$ is moved by A_p for all $p \in \pi_i$. Then $\operatorname{Orb}_G(v_1, \ldots, v_k)$ is moved by A_p for all $p \in \pi$.

We now assume that V is an irreducible AG-module. We may apply Lemma 1 with A, GV, [A,G]V, V in place of A, G, M, N and conclude that it suffices to find $v \in V$ such that $\operatorname{Orb}_{[A,G]}(v)$ is moved by A_p for all $p \in \pi$. By the inductive hypothesis we may then assume that G = [A,G]. It follows that $O^{\pi'}(AG) = AG$, since otherwise a proper factor group of G would be centralized by A, contrary to G = [A,G].

Suppose that V is imprimitive. Let $V = V_1 \oplus \cdots \oplus V_t$ be an imprimitivity decomposition for the action of AG on V. We may partition $\{1, \ldots, t\}$ into blocks B_j , $1 \leq j \leq s$, and set $U_j = \sum_{i \in B_j} V_i$, so that AG permutes the set $\{U_1, \ldots, U_s\}$ primitively. Let C be the kernel of the permutation action of AG on the U_j . Since $AG = O^{\pi'}(AG)$, we have $A \leq C$. By [1, Theorem 1] we may choose $S \leq \{1, 2, \ldots, s\}$ so that the stabilizer in AG of $\sum_{j \in S} U_j$ is C. Let $U = \sum_{j \in S} U_j$. Let $\pi_1 = \{p \in \pi: A_p \leq C\}$.

Let $A_1 = \prod_{p \in \pi_1} A_p$ so that $C = A_1(C \cap G)$. All the irreducible constituents of $V_{C \cap G}$ are AG-conjugate. Thus if K_j denotes the kernel of C on U_j , then $\bigcap_{x \in AG} K_j^x = 1$ for each $j \in S$. Let $p \in \pi_1$. Since all p-Sylow subgroups of C are conjugate under $G \cap C$, it follows that $[A_p, G \cap C]$ char $G \cap C$, and so $[A_p, G \cap C]'$ char $G \cap C$. The last two sentences imply that $[A_p, G \cap C]' \notin K_j$ for any $j \in S$. Hence $A_p \notin K_j$ for $p \in \pi_1$ and $j \in S$. Since $K_j \triangleleft C$, it follows that $K_j \leqslant G \cap C$ and $[A_p, (G \cap C)/K_j]$ is nonabelian for $p \in \pi_1$ and $j \in S$.

For $j \in S$, we may now apply the inductive hypothesis with A_1 , $(G \cap C)/K_j$, U_j in place of A, G, V. We obtain $u_j \in U_j$ such that $\operatorname{Orb}_{G \cap C}(u_j)$ is moved by A_p for all $p \in \pi_1$. Let $u = \sum_{j \in S} u_j$. If $p \in \pi - \pi_1$ and $P \in \operatorname{Syl}_p(AG)$, then the choice of S insures that P does not centralize u. If $P \in \operatorname{Syl}_p(AG)$ and $p \in \pi_1$, then the definition of u_j implies that P does not centralize u. For every $p \in \pi$, the last two sentences show that A_p fixes no element in $\operatorname{Orb}_G(u)$. If A_p stabilized $\operatorname{Orb}_G(u)$, then Glauberman's Lemma applied to the action of A_pG on $\operatorname{Orb}_G(u)$ would yield a contradiction. Hence A_p moves $\operatorname{Orb}_G(u)$ as desired.

We may now assume that V is a primitive AG-module. If $F(AG) \leq G$, then some $A_p \leq F(AG)$, and so $A_p \leq AG$, contrary to $[A_p, G] \neq 1$. Hence $F(AG) \leq G$, and so F(AG) = F(G). Set F(AG) = F. Now AG can play the role of "G" in Lemma 2. Let $T, U \leq AG$ be as in the conclusion of Lemma 2. Suppose $T \neq U$. Then every 2'-element of AG centralizes $O_2(T)$, so $AG/C_{AG}(O_2(T))$ is a nonidentity 2-group, contradicting $O^{\pi'}(AG) = AG$. Thus T = U is cyclic. Let Z, D, and E be as in Lemma 2, so that $F = C_D(E/Z)$ and each Sylow subgroup of E/Z is a completely reducible D/F-module.

Fix $p \in \pi$. Since AG/D is abelian, $[A_p, G] \leq D \cap G$. Thus $[A_p, G] = [A_p, A_p, G]$ = $[A_p, D \cap G]$. Suppose $[A_p, E/Z] = 1$. Since D and $C_{AG}(E/Z)$ are normal in AG, we have $[A_p, G] = [A_p, D \cap G] \leq C_D(E/Z) = F$. Hence

$$\left[A_{p},G\right] = \left[A_{p},A_{p},G\right] = \left[A_{p},F\right] = \left[A_{p},E\right]\left[A_{p},T\right] \leq ZT = T,$$

contrary to the hypotheses of Proposition 3. Hence $[A_p, E/Z] \neq 1$. Let E_1 be a Sylow subgroup of E with $[A_p, E_1/E_1 \cap Z] \neq 1$. We apply Lemma 4 to A_pE_1, E_1, A_p, V in place of H, E, P, V. We conclude that $|C_V(A_p)| \leq |V|^{1/2}$.

Let Y be an irreducible F-submodule of V. By Lemma 3, $|Y| = |W|^{me}$, where $e^2 = |E:Z|$ and m is a positive integer. Moreover W is a faithful irreducible T-submodule of Y, so that |T| divides |W| - 1.

Now $|G \cap D| = |G \cap D; F||F|$. By Lemmas 2 and 5, and an obvious subdirect product argument, $|D;F| \leq |E;Z|^{9/4} = e^{9/2}$. We have $|G \cap D| \leq e^{9/2}e^2|T| = |T|e^{13/2}$. Since $[A_p, G] = [A_p, G \cap D]$, we have $O^{p'}(AG) \leq A_p(G \cap D)$, so $|\text{Syl}_p(AG)| \leq |G \cap D| \leq e^{13/2}|T|$. Hence

$$\sum_{P \in \text{Syl}_{p}(AG)} |C_{V}(P)| \leq |T|e^{13/2} |C_{V}(A_{p})| \leq |T|e^{13/2} |V|^{1/2}$$

We will show that the following inequality holds:

(*)
$$\sum_{P \in \operatorname{Syl}_p(AG)} |C_V(P)| \leq p^{-2} |V|.$$

Suppose (*) is false, so that $p^2 |T| e^{13/2} > |V|^{1/2} \ge |W|^{e/2}$.

If $[A_p, Z] \neq 1$, then p divides |Aut Z| and so p | (s - 1) for some prime divisor s of |Z|. Since $Z = T \cap E$, we have s | e and $s \leq |T| < |W|$. Since p > 17 and p | (s - 1), it follows that $s \geq 47$. Since $p < s \leq |T| < |W|$, we have $|W|^3 e^{13/2} > |W|^{e/2}$, so that $e^{13/2} > |W|^{(e/2)-3} > 48^{(e/2)-3}$. Hence e < 20, contrary to $s \geq 47$ and s | e.

Thus we assume $[A_p, Z] = 1$. Let $e = \prod_i q_i^{n_i}$ for distinct primes q_i . Since $[A_p, E/Z] \neq 1$ and $A_p \leq D$, p divides $|\operatorname{Sp}(2n_i, q_i)|$ for some i. Hence $p | q_i^{2m_i} - 1$ for some m_i with $1 \leq m_i \leq n_i$. Thus $p | q_i^{m_i} + 1$ or $p | q_i^{m_i} - 1$, where $q_i^{m_i} | e$. It follows that $p \leq e + 1$. Since |T| < |W|, we have $(e + 1)^2 e^{13/2} > |W|^{(e/2)-1}$. Since $|W| \geq 3$, we have e < 70.

If $m_i > 1$, our hypothesis that $p \notin \pi_0$ implies that $q_i^{m_i} > 70$. Hence e > 70, a contradiction. Thus $m_i = 1$ and $p \notin \pi_0$ implies that $q_i \ge 37$. Since q_i divides |T| and |T| divides |W| - 1 and |W| is a prime power, we must have $|W| \ge 83$. Hence $(e + 1)^2 e^{13/2} > 83^{(e/2)-1}$. As above, this implies that e < 20, contrary to $q_i | e$ and $q_i \ge 37$.

We conclude that (*) holds for each $p \in \pi$. Since $\sum_{p \in \pi} p^{-2}$ is less than 1, it follows that there exists $v \in V$ such that v is centralized by no p-Sylow subgroup of AG for any $p \in \pi$. Then no A_p fixes any element in $Orb_G(v)$. By Glauberman's Lemma, each A_p moves $Orb_G(v)$.

PROPOSITION 4. Let A be cyclic of squarefree π'_0 -order. Let N be an A-invariant normal abelian subgroup of G which is a direct product of completely reducible AG-modules. Suppose $N = C_{AG}(N)$. For each $p \in \pi(A)$, suppose that $[A_p, G/N]$ is either nonabelian or trivial. Then A has a faithful orbit on Irr(G).

PROOF. Let V = Irr(N), $\pi = \pi(A)$, $\pi_1 = \{ p \in \pi : [A_p, G/N] \text{ is nonabelian} \}$, and $\pi_2 = \pi - \pi_1$. Let A_1 be the Hall π_1 -subgroup of A.

Then A_1 , G/N, and N satisfy the hypotheses of Proposition 3. Hence we may choose $v \in V$ so that $\operatorname{Orb}_G(v)$ is moved by A_p for all $p \in \pi_1$.

Write $V = V_1 \times \cdots \times V_k$, a direct product of irreducible AG-modules. We may assume that each component v_i of v is not 1. For each $p \in \pi_2$, we may choose $i \in \{1, \ldots, k\}$ such that V_i is not centralized by A_p . Since $[A_p, G] \leq N = C_{AG}(V)$, the centralizer in V_i of A_p is an AG-submodule of V_i , and hence is trivial. Thus A_p moves v_i , and so A_p moves v.

We think of v as a linear character λ of N. Then $\operatorname{Orb}_N(\lambda) = \{\lambda\}$ is not A_p -invariant for any $p \in \pi_2$. By Lemma 1 with A, G, N, N in place of A, G, M, N, we conclude that $\operatorname{Orb}_G(\lambda)$ is moved by A_p for all $p \in \pi_2$. By the second paragraph, $\operatorname{Orb}_G(\lambda)$ is moved by A_p for all $p \in \pi$. Hence if $\chi \in \operatorname{Irr}(G|\lambda)$, then χ lies in a faithful A-orbit.

PROOF OF THEOREM 1. We may assume A is cyclic of squarefree order. The hypotheses of Theorem 1 imply that F(AG) = F(G). Since $G = [A_p, G]C_G(A_p)$ for each $p \in \pi(A)$, it follows that A acts faithfully on $G/\Phi(AG)$. Thus we may assume that $\Phi(AG) = 1$ and hence that F(G) = F(AG) is a direct product of completely reducible AG-modules (see [3, III, Satz 4.5]).

Partition $\pi(A) = \pi$ as follows. Let $\pi_1 = \pi \cap \pi_0$, $\pi_2 = \{ p \in \pi : p \notin \pi_0 \text{ and } [A_p, G/F(G)] \text{ is abelian and nontrivial} \}$, $\pi_3 = \pi - \pi_1 - \pi_2$, and π_4 be the larger of π_2 and π_3 . Let A_4 be the Hall π_4 -subgroup of A. By Proposition 3 or Proposition 4 applied to A_4 and G, we may conclude that A_4 has a faithful orbit on Irr(G). Since $|\pi(A)| \leq 2|\pi(A_4)| + 8$, this completes the proof.

References

^{1.} D. Gluck, Trivial set-stabilizers in finite permutation groups, Canad. J. Math. 35 (1983), 59-67.

^{2.} D. Gluck and T. R. Wolf, Defect groups and character heights in blocks of solvable groups. II, J. Algebra 87 (1984), 222-246.

PRIMES DIVIDING CHARACTER DEGREES

3. B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin, 1967.

4. I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.

 Solvable group character degrees and sets of primes, J. Algebra 104 (1986), 209–230.
T. R. Wolf, Defect groups and character heights in blocks of solvable groups, J. Algebra 72 (1981), 183-209.

7. _____, Solvable and nilpotent subgroups of $GL(n, q^m)$, Canad. J. Math. 34 (1982), 1097-1111.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202