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NONCOMMUTING UNITARY GROUPS

AND LOCAL BOUNDEDNESS

JAN RUSINEK

Abstract. We exhibit two unitary strongly continuous one-parameter groups

(e )ren and (e )iei acting in a Hubert space H, a dense subspace D of H

contained in the domains of Ax and A2 such that (Ax{ D) U A2(D)) c D and

(<?V(D) U eAl'(D)) c D for each t e R, and an element x of D such that the

function t -» ||/)le''2'^|| is not locally bounded.

1. Introduction. Let 77 be a Hubert space. Suppose that Ax and A2 are the

generators of unitary strongly continuous one-parameter groups (eAl')teR and

(eA2'),^R, respectively, acting in 77. Suppose, moreover, that D is a dense subspace

of 77 contained in the domains of Ax and A2 such that (AX(D) U A2(D)) a D and

(eA''(D) U eAl'(D)) c 77 for each ? g R. The following is an open problem: Does

AxA2x = A2Axx for all x G 77 imply that the groups (eAl')ieR and (e^2'),eR

commute? This is a particular case of a more general question about integrability of

Lie algebra representations. Under the additional assumption:

.  . for   each   x g 77,   the   function   t -» \\A2eAl'x\\   is   locally

bounded,

the problem above is solved in the affirmative. More generally, known results on

integration of Lie algebra representations involve in a crucial way conditions

analogous to (*) (cf. [1, Theorems 3.4 and 9.1]). In this connection, P. E. T.

Jorgensen and R. T. Moore (cf. [1, Remark, p. 67]) raised the question whether for

Ax, A2, D as above, condition (*) is automatically fulfilled. We show that in general

this is not the case. Our result shows, among other things, that the topological

assumption on the domain 77 in Proposition 3.6 of [1] is essential.

2. The result. Given a subset A of R and x g R, let A + x = {y g R: y = a + x,

a e=A}.

For each integer « > 2, let 7„ = (2",2" + 3"") and J„ = (2" + 2 ■ 3"", 2" +

3~"+1).

Proposition 2.1. Given x, y g R, there exists at most one pair of integers m ^ 2,

n ^ 2 such that

(I„ + x)n(Jm+y)* 0.
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Proof. Suppose that for x, y g R and integers m( ^ 2, n( > 2 (i = 1,2), the sets

( /„ + x) n ( Jm + y) are not empty. Then

y - x = 2"'' - 2"' + e, - r,,,

where 2 • 3"m' < e, < 3"m' + 1 and 0 < r/, < 3-"'. Since |e, - r/J + |e2 - r/2| < 4/9

< 1, it follows that

(2.1) 2"'1 - 2"' = 2"!2 - 2"2

and

(2.2) êj - i}, - e2 - r/2.

Equation (2.1) implies that either m, = m2 and «, = n2, or m, = «[ and m2 = n2.

In the latter case, we have 3~m' < e¡ - tj, < 3~m>+1, whence, by (2.2), m, = m2 =

nx = n2. Thus, in both cases, mx = m2 and nx = n2.

The proof is complete.

Let 7 = U"_2 7„ and J = U^=2 /„. As an immediate corollary, we obtain

Proposition 2.2. For each x, y g R, r/ie set ( 7 + x ) n ( 7 + y ) is bounded.

For each n G N, let C"(R) be the space of all complex functions on R which

possess continuous derivatives of order < n. Let C°°(R) = n"=1C"(R). For « g N

U {oo}, let Cy'(R) be the space of functions in C"(R) with compact support. For any

function / on R, we denote by supp/ the support of /.

For each integer n > 2, let tp„ be a nonnegative function in Có°°(R) with support in

7„, such that |m,(/'| < 1 for k < n. Set
oc

n=2

Clearly, supptp c 7. Moreover, all derivatives of <p are square integrable, since for

any k g N,

A oc

/ Wk\x)fdx^  Z  f Uk)(x))2dx+    E    3~".

Given an integer « > 2 and x g R, set

^n(x) = nö,rV„(^-2-3-"),

where S„ = (fRy*(x)dx)l/2. Put t//(x) = Lf=2xp„(x) (x G R). Clearly, supp^ C 7.

Let 7_2(R) be the Hubert space of all (classes of) complex square integrable

functions on R, endowed with the norm || • ||2.

Let w^ be the multiplication operator defined by m^f = \¡>f (f G D(-n^)), with the

domain 77(77,) = {/€ L2(R): i/>/g L2(R)}. 77^ is a selfadjoint operator in L2(R)

and Ax = itr^ is the generator of the unitary strongly continuous group (eA,')lŒ R in

L2(R) defined by

(eA''f)(x) =ei«Hx)f(x)        (/g L2(R), x, t g R).

Let /42 be the generator of the unitary strongly continuous group (eAl'),eR in

7/(R) given by

(e""/)(x)-/(* - 0       (/g L2(R), x,<6 R).
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It is easily checked that for any / G C\R) n L2(R) with /' g L2(R), / is in D(A2)

and A2f= -/'.

Let Z)0 be the set of all functions of the form

m

x -» q>w(x - u)Yle"J*ix~'J*       {tj,*j, w g R, w,/t g N).
7-1

Proposition 2.3. The following conditions are satisfied:

(1) (eAl'(D0) U eA*'(D0)) c D0 for each t G R;

(2) 770 c /)(/!,) andAx(D0) c C0°°(R);

(3) 77() c 77(/42) and, /or eac/i /g 770, A2f = gx + g2 vv/f/i gj G 7)0 a«<7 g2 G

C0°°(R).

Proof. (1) is evident.

(2) For any /: x -» m(A)(x - u)Y\JLx <?'"'./*<*-*/> (í^j^eR, m,k(=N), the

support of ipf is contained in (7 + u) C\ J and hence, by Proposition 2.2, is compact.

Thus/g £(/!,) and /1,/e C0°°(R).

(3) If / g D0 takes the form as in the paragraph above, then, since all derivatives

of <p are square integrable, / is in D(A2) and A2f = gx + g2, where

m m

gx(x) = -cp<* + 1>(* - u)T\e">^-i>)    and    g2(x) = -tf(x) £ r,*'(* - Sy)
7-1 7-1

(x G R).

It is clear that g, g 770. Since suppg2 c (7 + u) n U"L,(i + s,), it follows from

Proposition 2.2 that g2 G C0°°(R).

The proof is complete.

Let D = {/G Cœ(R): /-/, +/2, /, g Q°(R), /2 G span770}, where span730

denotes the linear space spanned by 770.

We now state our major result.

Theorem 2.4. 77 is a dense subspace of L2(R) contained in D(AX) n 77(^2) such

that (AX(D) UA2(D))c D and (eA>'(D) U eA*'(D)) c D for each t g R. Moreover,

(p is an element of D such that the function t -» j| ̂ 4x^ ̂-'<qp112 is bounded in no

neighborhood of 0.

Proof. In view of Proposition 2.3, only the last assertion requires a proof.

For each n g N and each x g R, we have

oc

ÍAxe2' "A^)(x) = i  £   ^,(x)rf/(x-2-3-").
A,/=2

Since t//„(x)(p„(x - 2 • 3"") = n8;\;(x - 2 ■ 3"") * 0 for some x g R, it follows

from Proposition 2.1 that if k + n or / ¥= n, then \¡/,(x)<pk(x - 2 ■ 3~") = 0 for all

x g R. Consequently,

¡Axe2-' "^<p|  -ni,-1   / <p,?(x-2-3-)¿x

from which the conclusion follows.

v*
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