ON THE ORLICZ-PETTIS PROPERTY IN NONLOCALLY CONVEX F-SPACES

M. NAWROCKI

(Communicated by William J. Davis)

ABSTRACT. Recently, J. H. Shapiro showed that, contrary to the case of separable F-spaces with separating duals, the Orlicz-Pettis theorem fails for h_p , 0 , and some other nonseparable <math>F-spaces of harmonic functions. In this paper we give new, much simpler examples of F-spaces for which the Orlicz-Pettis theorem fails; namely weak- L_p sequence spaces $l(p,\infty)$ for $0 . We observe that if <math>0 then the space <math>l(p,\infty)$ is nonseparable but separable with respect to its weak topology. Moreover, we show that the Orlicz-Pettis theorem holds for every Orlicz sequence space (even nonseparable).

1. Introduction. Let $X=(X,\tau)$ be a topological vector space whose topological dual space separates points. We say that X has the *Orlicz-Pettis Property* (OPP) if every weakly subseries convergent series in X (i.e. such a series $\sum x_n$ in X that weak- $\lim_{n\to\infty}\sum_{j=1}^n x_{k_j}$ exists for each increasing sequence $\{k_j\}$ of positive integers) is convergent in (X,τ) . The classical Orlicz-Pettis theorem states that every Banach space has the Orlicz-Pettis Property. The reader is referred to [4] for information about the Orlicz-Pettis theorem and its importance in the development of the theory of F-spaces.

We recall that OPP has all locally convex spaces or separable F-spaces (i.e. complete metrizable t.v.s.) with separating duals. Recently, J. H. Shapiro [5] has shown that the Orlicz-Pettis theorem cannot be extended to the nonseparable case. The aim of this paper is to give new, simpler natural examples of F-spaces without OPP as well as to prove other results mentioned in the abstract.

I wish to thank Lech Drewnowski and Augustyn Ortynski for helpful remarks on this material.

2. The Orlicz-Pettis Property for solid spaces. In the sequel we prefer to work with Mackey topologies instead of weak topologies. We recall that the Mackey topology of a topological vector space $X = (X, \tau)$ is the strongest locally convex topology $\mu = \mu(X)$ on X producing the same topological dual space as τ . If (X,τ) is an F-space whose dual separates points, then $\mu(X)$ coincides with the strongest locally convex topology on X which is weaker than τ . Moreover, if \mathcal{B} is a base of neighborhoods of zero for τ , then the family $\{\overline{\operatorname{conv}}^{\tau}U \colon U \in \mathcal{B}\}$ is a base of neighborhoods of zero for μ (see [5, Theorem 2.9]). The space $(X,\mu(X))$ being locally convex has OPP. Consequently, an F-space (X,τ) has the Orlicz-Pettis Property if and only if every $\mu(X)$ -subseries convergent series in X is τ -convergent.

Received by the editors April 24, 1986 and, in revised form, July 20, 1986. 1980 Mathematics Subject Classification (1985 Revision). Primary 46A06, 46A35, 45A45. Key words and phrases. The Orlicz-Pettis theorem, weak- L_p spaces, Orlicz spaces.

Throughout this paper we denote by ω the space of all real sequences and by ω_0 the subspace of ω consisting of all sequences with finte supports. By e_n is denoted the *n*th unit vector in ω and other sequence spaces, $n=1,2,\ldots$ For any $x=(t_n)\in \omega$ we define $R_nx=(0,0,\ldots,0,t_{n+1},t_{n+2},\ldots),\ n=1,2,\ldots$

A subset E of ω is called *solid* if $x \in E$ and $y \in \omega$ and $|y| \le |x|$ implies $y \in E$. Let $X = (X, \tau)$ be a t.v.s. contained set theoretically in ω and containing ω_0 . We say that X is *solid* if there is a base of neighborhoods of zero for τ consisting of solid sets.

For any solid space (X, τ) we denote by X_a or X_a^{τ} the closed linear subspace of X spanned by the unit vectors. Let \mathcal{B} be a base of solid τ -neighborhoods of zero. We observe that for any $U \in \mathcal{B}$ the set $\omega_0 + U$ is solid. Therefore, $X_a = \overline{\omega}_0^{\tau} = \bigcap \{\omega_0 + U : U \in \mathcal{B}\}$ is a solid space. It is obvious that the family of projections $\{R_n : n \in \mathbb{N}\}$ is equicontinuous on X. This immediately implies that the sequence of unit vectors $\{e_n\}$ is a basis of X_a . X_a is solid, so the series $\sum t_n e_n$ is τ -subseries convergent for any $x = (t_n) \in X_a$.

Obviously, every solid F-space has separating dual space. It is easily verified that the convex hull and the closure of any solid set are solid. Thus, $(X, \mu(X))$ is solid for any solid F-space X.

The above observations show that if $x = (t_n) \in X_a^{\mu} \setminus X_a^{\tau}$, then the series $\sum t_n e_n$ is $\mu(X)$ -subseries convergent but it is not τ -convergent. This proves the following

PROPOSITION 2.1. Let $X=(X,\tau)$ be a solid F-space. If $X_a^{\tau} \neq X_a^{\mu}$, then X does not have the Orlicz-Pettis Property.

For the proof of our next theorem we need the following version of the more general Kalton result [3].

LEMMA 2.2. Let (Y, ρ) be a separable F-space and let ν be a weaker Hausdorff vector topology on Y. Then any ν -subscries convergent series in Y is ρ -convergent.

THEOREM 2.3. If (X, τ) is an F-space with separating dual space, Y is weakly closed separable subspace of X and X/Y has the Orlicz-Pettis Property, then so does X.

PROOF. Suppose that Y is a separable, weakly closed (so also $\mu(X)$ -closed) subspace of X such that X/Y has OPP. Let $\|\cdot\|$ be an F-norm inducing the topology τ and let $\sum x_n$ be any $\mu(X)$ -subseries convergent series in X which is not τ -convergent. Then $\{\sum_{j=1}^n x_j\}_{n\in\mathbb{N}}$ is not a Cauchy sequence in X, so there is an $\varepsilon>0$ and a pair $\{j_n\}$, $\{l_n\}$ of sequences of positive integers such that $j_1< l_1< j_2< l_2<\cdots$ and $\|\sum_{j=j_n}^{l_n} x_j\|>\varepsilon$ for $n=1,2,\ldots$ Let $y_n=\sum_{j=j_n}^{l_n} x_j, \ n=1,2,\ldots$. Then the series $\sum y_n$ is $\mu(X)$ -subseries convergent. The canonical quotient mapping $Q\colon X\to X/Y$ is $(\mu(X),\mu(X/Y))$ -continuous, so the series $\sum Q(y_n)$ is $\mu(X/Y)$ -subseries convergent. X/Y has OPP, thus the series $\sum Q(y_n)$ is τ/Y -subseries convergent. Passing to a subsequence we may assume that $\sum \|Q(y_n)\|_1<\infty$, where $\|\cdot\|_1$ is the quotient F-norm of $\|\cdot\|$. Therefore, there is a pair of sequences $\{u_n\}\subset Y$ and $\{v_n\}\subset X$ such that $y_n=u_n+v_n$ and $\sum \|v_n\|<\infty$. The series $\sum v_n$ being absolutely convergent is both τ - and μ -subseries convergent in X. Consequently, the series $\sum u_n$ is μ -subseries convergent in Y. However, the space Y is μ -closed in X, so the series $\sum u_n$ is μ -subseries convergent in Y. However, the space Y is μ -closed in Y, so the series Y is a Hausdorff vector topology on Y which is weaker than $\tau|_Y$. By Lemma

2.2 the series $\sum u_n$ is τ -convergent. Finally, the series $\sum y_n$ is τ -convergent. This contradicts the fact that $||y_n|| > \varepsilon$ for $n = 1, 2, \ldots$

COROLLARY 2.4. Every Orlicz segence space has the Orlicz-Pettis Property.

PROOF. Let l_{φ} be an Orlicz sequence space and let $Y = (l_{\varphi})_a$. Then the quotient space l_{φ}/Y equipped with the canonical quotient F-norm is a Banach space (see [2, Proposition 2.1]). Therefore, l_{φ}/Y has OPP and, obviously, Y is weakly closed in l_{φ} . Moreover, Y is separable, so the result directly follows from Theorem 2.3.

2. Weak- L_p sequence spaces. For any sequence $x=(t_n)\in\omega$ tending to zero we denote by $x^*=(t_n^*)$ the nonincreasing rearrangement of the sequence $|x|=(|t_n|)$.

If $0 then <math>l(p, \infty)$ is the space of all sequences $x = (t_n) \in c_0$ such that $||x||_{p,\infty} = \sup\{n^{1/p}t_n^*: n \in \mathbb{N}\} < \infty$.

It is easy to prove that the family of sets $U_{\varepsilon} = \{x \in l(p,\infty) : ||x||_{p,\infty} \le \varepsilon\}, \ \varepsilon > 0$, is a base of neighborhoods of zero, consisting of solid sets for the unique complete, metrizable vector topology $\lambda_{p,\infty}$ on $l(p,\infty)$. Thus, the space $(l(p,\infty), \lambda_{p,\infty})$ is a solid F-space (see [1] for more details).

THEOREM 3.1. If $0 then <math>l(p, \infty)$ does not have the Orlicz-Pettis Property.

PROOF. If $0 then the result immediately follows from Proposition 2.1 and [1, Theorem 4]. Indeed, M. Cwikel essentially showed that every continuous linear functional on <math>l(p,\infty)$, $0 , vanishing on <math>\omega_0$ is identically equal to zero, so $\bar{\omega}_0^{\mu} = l(p,\infty)$. However, $(n^{-1/p}) \notin l(p,\infty)_a$ because the series $\sum n^{-1/p} e_n$ is not $\lambda_{p,\infty}$ -convergent in $l(p,\infty)$.

If p=1 then the situation is somewhat more involved. Now, the series $\sum n^{-1}e_n$ is not μ -subseries convergent (see Remarks 3.2). However, it is still possible to find a sequence $x=(t_n)$ in $l(p,\infty)$ such that

- (i) the series $\sum t_n e_n$ is not $\lambda_{1,\infty}$ -convergent,
- (ii) $x \in l(1,\infty)^{\mu}_a$.
- (ii) is equivalent to
 - (iii) $x \in \omega_0 + \operatorname{conv} U_{\varepsilon}$ for any $\varepsilon > 0$.

We construct inductively an increasing sequence $\{n_k\}_{k=0}^{\infty}$ of nonnegative integers such that

(a)
$$\frac{1}{j} \sum_{i=1}^{j} \left(n_{k-1} + i \frac{n_k - n_{k-1}}{j} \right)^{-1} > \left(\frac{1}{2} \sum_{i=1}^{j} \frac{1}{i} \right) n_k^{-1}$$

for $j = 1, 2, \dots, k, k = 1, 2, \dots, n_0 = 0$,

(b)
$$k! \text{ divides } n_k - n_{k-1} \text{ for } k = 1, 2,$$

The above construction is possible because

$$\lim_{t \to \infty} \frac{1}{j} \sum_{i=1}^{j} t \left(a + i \frac{t-a}{j} \right)^{-1} = \sum_{i=1}^{j} \frac{1}{i}$$

for any a > 0, $j \in \mathbb{N}$.

Let us denote $I(k) = \{n_{k-1}+1, \ldots, n_k\}$ for $k=1,2,\ldots$. We define $x=(t_n) \in c_0$ taking $t_n = n_k^{-1}$ for $n \in I(k)$, $k, n \in \mathbb{N}$. The sequence x is nonincreasing, positive, $nt_n \leq 1$ and $n_k t_k = 1$ for $n, k = 1, 2, \ldots$. This implies that $||R_n x||_{1,\infty} = 1$ for $n = 1, 2, \ldots$, so $x \in l(1, \infty)$ and the series $\sum t_n x_n$ is not $\lambda_{1,\infty}$ -convergent. The proof will be finished if we show that x satisfies (iii).

Fix $\varepsilon > 0$. Choose $j \in \mathbb{N}$ such that

$$c_j := \frac{1}{2} \sum_{i=1}^j \frac{1}{i} > \varepsilon^{-1}.$$

Then, by (b), j divides $n_k - n_{k-1}$ for $k \ge j$. Let

$$l_{k,i} = n_{k-1} + i \frac{n_k - n_{k-1}}{i}$$

for i = 0, 1, ..., j, k = j, j + 1, ..., and

$$I(k,i) = \{l_{k,i} + 1, \dots, l_{k,i+1}\}$$

for i = 0, 1, ..., j - 1, k = j, j + 1, ... We define $y_m = (s_{m,n})_{n=1}^{\infty} \in \omega$, m = 0, 1, ..., j - 1, taking

$$s_{m,n} = \begin{cases} (c_j l_{k,i+1})^{-1} & \text{if } n \in I(k, (m+i)_{\text{mod } (j)}) \text{ for some} \\ & i = 0, 1, \dots, j-1, \ k = j, j+1, \dots, \\ 0 & \text{otherwise} \end{cases}$$

It is easily seen that $\sup\{ns_{m,n}^*: n \in \mathbb{N}\} \leq \varepsilon$, so $y_m \in U_\varepsilon$ for $m = 0, 1, \ldots, j-1$. If $n \in I(k, i)$ for some $i = 0, 1, \ldots, j-1, k = j, j+1, \ldots$, then by (a)

(c)
$$\frac{1}{j} \sum_{m=0}^{j-1} s_{m,n} = \frac{1}{j} \sum_{i=1}^{j} \left[c_j \left(n_{k-1} + i \frac{n_k - n_{k-1}}{j} \right) \right]^{-1} \ge n_k^{-1} = t_n.$$

We define $z = (s_n) \in \omega_0$ taking $s_n = t_n$ for $n = 1, 2, ..., n_{j-1}$, and $s_n = 0$ for $n > n_{j-1}$. Therefore, by (c)

$$|x| < z + \frac{1}{j} \sum_{m=0}^{j-1} y_m \in \omega_0 + \operatorname{conv} U_{\varepsilon}.$$

This implies (iii) because the set $\omega_0 + \text{conv } U_{\varepsilon}$ is solid.

REMARKS 3.2. (a) We have just observed that the sequence $(n^{-1/p})$ does not belong to $l(p,\infty)_a$, 0 . Essentially, it is easy to prove that

$$l(p,\infty)_a = \{x = (t_n) \in c_0 : \lim n^{1/p} t_n^* = 0\}.$$

- (b) We have noticed that if $0 then <math>\omega_0$ is weakly dense in $l(p, \infty)$. Therefore, $l(p, \infty)$ for 0 are new examples of F-spaces which are nonseparable but their weak topologies are Hausdorff and separable (see also [5]).
- (c) $l(1,\infty)$ is nonseparable in its Mackey (so also weak) topology. Indeed, it is easy to see that the functional

$$q(x) = \sup_{n} \frac{\sum_{i=1}^{n} t_{i}^{*}}{\sum_{i=1}^{n} (1/i)}, \qquad x = (t_{i}) \in c_{0},$$

is a continuous norm on $l(1,\infty)$. There is an increasing sequence $\{n_k\}_{k=0}^{\infty}$ of positive integers such that $1/2 \leq q(z_k) \leq 1$, where $z_k = \sum_{n=n_k+1}^{n_{k+1}} n^{-1}e_n$, $n_0 = 0$, $k = 1,2,\ldots$ Now we observe that the mapping $l_{\infty} \ni (s_n) \longmapsto \sum s_n z_n$ (the convergence in the product topology) is an isomorphism of l_{∞} into $l(1,\infty)$ equipped with the topology ρ induced by q. ρ is weaker than the Mackey topology μ of $l(1,\infty)$, so the space $(l(1,\infty),\mu)$ is nonseparable.

Let us note that the series $\sum n^{-1}e_n$ is not ρ - (so also μ -) convergent.

(d) The author does not know whether the topology ρ defined above coincides with the Mackey topology of $l(1,\infty)$. We have observed only that $\rho \leq \mu(l(1,\infty))$. However, let us notice that ρ induces on $l(1,\infty)_a$ the Mackey topology of $l(1,\infty)_a$. Indeed, it is easy to prove that if a sequence $x=(t_n)$ is an extreme point of the compact, convex set $B_n=B \cup \operatorname{span}\{e_1,e_2,\ldots,e_n\}$ where $B=\{x\in l(1,\infty)\colon q(x)\leq 1\},\ n\in\mathbb{N}$, then $x^*=(1,1/2,1/3,\ldots,1/n,0,0,\ldots)$. Therefore, every extreme point of B_n belongs to the unit ball U of $l(1,\infty)_a$. Consequently, $\overline{\operatorname{conv}}\,U\supset B\cap\omega_0$. This, the density of ω_0 in $l(1,\infty)_a$, and the homogeneity of the functionals $\|\cdot\|_{1,\infty}$ and q imply that the topology induced by ρ on $l(1,\infty)_a$ is a stronger that $\mu(l(1,\infty)_a)$.

REFERENCES

- 1. M.Cwikel, On the conjugates of some function spaces, Studia Math. 45 (1973), 49-55.
- 2. L. Drewnowski and M. Nawrocki, On the Mackey topolgy of Orlicz sequence spaces, Arch. Math. 39 (1982), 59-68.
- 3. N. J. Kalton, Subseries convergence in topological groups and vector measures, Israel J. Math. 10 (1971), 402-412.
- 4. ____, The Orlicz-Pettis theorem, Contemp. Math., vol. 2, Amer. Math. Soc., Providence, R.I., 1980, pp. 91-100.
- 5. J. H. Shapiro, Some F-spaces of harmonic functions for which the Orlicz-Pettis theorem fails, Proc. London Math. Soc. 50 (1985), 299-313.

Institute of Mathematics, A. Mickiewicz University, ul. Matejki 48/49, 60-769 Poznan, Poland