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ABSTRACT. A variant of Doob's maximal inequality is obtained for dyadic

martingales with multiple indices. The inequality furnishes a precise estimate

of the Lp norm of the maximal function in terms of the Lp norms of the jumps,

p>2.

1. Introduction. Let {fn,?n', n G Z+} be a real d-parameter L2 bounded

dyadic martingale with difference array {A„/}. The underlying probability space

is [0,1 )d equipped with Lebesgue measure. Here 7n is the field consisting of all

rectangles

mL[(*,-l)2-",t,2-"')S[0,l)"

l=\

such that 1 < ki < n¿, i = l,...,d; with n = (m,...,na). Also, A„/ :=

E„-i<m<„±/m with 1 = (1,...,1), so that E(Anf\?m) = 0, to < n, to ^ n.

Set /* := sup„ |/n|. The main result of this note is the following.

Theorem l.

(i-i)        ii/iP<«d(p-i)d/y£iiA"/iip'   p>2.

The case p = 2 is just Doob's L2 maximal inequality in the d-parameter setting.

The main interest for large p lies in the behavior of the best constant in this norm

inequality. In fact, for a suitable larger class of d-parameter martingales, R. Gundy

[4] shows that ||/*||p < (C7p)d||(E(A„/)2)1/2||p, p > 2, while by Minkowski's

inequality the last square function norm is dominated by the Besov like norm

(EIIAn/H2)1/2 in this range.
Consider for a moment the real Walsh polynomials of degree d. So, let A„e =

rit=i eni(u%), w = (uji, ... ,ujd) S [0, l)d, with en the nth Rademacher function.

Then g = ^cnA„e is a dyadic martingale for any constants cn. Borell [2] first

obtained (1.1) in case / takes the form g. Note that his proof relies on the two-

point contraction-type estimate [1].

(1.2) [i (\a - b/y/p~^I\p + \a + 6/Vp^T|p)] * " < \/a2 + b2,        p > 2.

The proof of Theorem 1, below in §2, relies also on (1.2). However, whereas, due

to the independence property of the Rademacher functions, the proof in [2] is valid
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in fact for Banach space valued coefficients cn in the Walsh polynomial g, our proof

of Theorem 1 utilizes in general only the orthogonality of the differences A„/, so

does not extend to the Banach space valued case.

We prove first

(1.3) ll/llp<(p-l)d/V£llA»/Up'        V>2.

The case d > 2 in (1.3) follows immediately from the case d = 1 by induction since

the marginal difference array {X)^°=i An/;n G Zd} defines a (d — 1) parameter

dyadic martingale for each fixed áth coordinate of the argument. Minkowski's

inequality is needed in the induction step. It is also instrumental in establishing

the initial case. Relation (1.1) follows from (1.3) by Doob's inequality.

Note that (1.3) is sharp in the following sense. Denote by CPid the best constant

in the norm inequality (1.3). Then

lim (logCp,d)/(dlogp) = i.
p—»oo *

This can be seen directly by choosing for each positive integer N

f = fN = ^2+Ane

where the + sign indicates that the sum is extended over all n G [1, N]d such that

n% < rij when i < j. Note that when d = 2, / = ((£*Li e¿)2 ~ N)/2- More

generally one can show that as N —► oo,

lp

N
I>      ~Nd'2

^i=i
d\

where by convergence of moments in the central limit theorem this last expression

is asymptotically no less than

(-1 + £1/p|.A/(0, l)|dp)Ad/7ci!.

On the other hand, £+ ||Ane||2 ~ Nd/d\ as N — oo. Hence,

21iminf(logCp,d)/(dlogp) > liminf f-log(d!) + -logE\M(0,l)\dA /(dlogp)
p—>oo p—»oo    \ p )

=   lim (-dlog(d) + dlog(dp))/(dlogp) = 1.

2.   Proof of Theorem 1.  Let first d = 1. Following [2], write f] = {-1,1}N

and

dpi(x) = ^^—-(z,),    x = (xi,...,xn,...) g Q.

Put poo = n¿eN /*• an(^ note tna,t (^î/'oo) is isomorphic to the Lebesgue unit

interval. Let now {/„} be an L2 bounded one-parameter dyadic martingale. Thus,

fn = fn(xi,.-.,xn) = Etioo(f/xi,...,xn) with some / G L2(f2,p00). Introduce

also K(x, ¿;) = 1 + Ax£, and define for any function g on Q:

Km9 =   /  K(Xm,Çm)9(xl,---,Xm-l,Çm,Xm+l,---)dpoo(Ç).
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Since {/„} is dyadic,

|(/n(*l)---)*n-lil) + fn(xi,...,Xn-i,-l)] = fn-l («1, • ■ • , Xn-i).

It follows that

(2.1) K*n(fn - fn-l) = Kfn ~ fn-l) = A(/„ - /„-l).

By (1.2) the integral operator K* has the important property

(2-2) \\K*n9\\p,,„ < \\9h,pn

with A = (p - l)-1/2 and p > 2.

Put now An/ = /„ — f„-i, fix p > 2 and set A = (p - l)-1/2. Notice that if a

function h depends only on coordinates X\,... ,xm then K*h = h for n > to. Thus,

E A¿Am/ = A*
m=l

Ë A*, Am/    + A„/
*,m = l

Hence by (2.2) and orthogonality,

II2

Up,Moo

/ •■• /  dpi   -dUn-i      \ E K*mAmf + A„/

2 \ P/2

dpn

2/p

< /   •••   /   dpi ■■■dßn-i   I

n-1

E K'mAmf
m=l

p/2

+ |An/|2       dpn

2/p

Next by an application of Minkowski's integral inequality, this last expression

does not exceed

/""" (/-/

n-l

E K'm^mf
m=l

-,2/p

dpi•■  dp„_i
>

2/p

+    / dfin(     |An/|p dpi • ■ • dp„-i

Now repeat this step. The first term of the above expression does not exceed

n-2

E K*m^mf

P \ T 2/P

dpi • •■dp„_2

+    / dp„_i Í / |An_i/|pdpi ■■•dpn_2J
2/p

Continuing in this way, obtain that

|2

(2.3)

E K^mf
m—1 P,Mo

<  ¿ [|dpm(||-■ Y |Am/|p dpi   -dp

=  E l|Am/||2.

l2/p

771=1
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By (2.1) and (2.3), (1.3) holds in case d = 1. By the remarks of the introduction

we conclude that (1.3) holds in the general case. Here ||/||p = sup,, H/^Hp.

To obtain (1.1) note that in case d = 2,

max|/„| =sup (sup|/,

and that gm = supn |/mn| forms a submartingale in to relative to the fields ^¡oo.

Indeed, gm is an increasing limit of positive submartingales: gm — lin^^oo |/mi| V

■ • • V |/mn|. This observation goes back to Cairoli [3]. Hence, by Doob's inequality,

un sup0m < qsuv[\gn

= qsup
m

„2

SUp|/m,n

< q  sup sup|
771        7i

i,n\\p = q   U\\p-

Thus, by (1.3) the proof of Theorem 1 is complete.
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