COMPLEMENTED INVARIANT SUBSPACES OF H^p , 0 , AND THE HAHN-BANACH EXTENSION PROPERTY

WILLIAM S. COHN

(Communicated by John B. Conway)

ABSTRACT. Let $0 and let <math>H^p$ denote the usual Hardy class of functions analytic on the disc. In this note we show that an invariant subspace of H^p is complemented in H^p if and only if it has the form BH^p where B is a Blaschke product whose zero sequence is a Carleson sequence. We also prove that this occurs if and only if the invariant subspace has the Hahn-Banach extension property.

If \mathcal{A} is the disc algebra of functions analytic in the open unit disc and continuous on the closed disc then the following theorem characterizes those closed ideals in \mathcal{A} which are also complemented in \mathcal{A} .

THEOREM A (CASAZZA, PENGRA, SUNDBERG [1]). For I a closed ideal in A, there exists a bounded projection Q of A onto I if and only if there is a Blaschke product B whose zero sequence is a Carleson sequence and $I = \{f : f \in A \text{ and } B \text{ divides } f\}$.

Recall that a sequence $\{z_n\}$ of points in the disc is a Carleson sequence if

$$\mu = \sum_{n=1}^{\infty} (1 - |z_n|) \delta_{z_n}$$

is a Carleson measure (see [3, Chapter VI]).

The authors in [1] remark that the complemented weak* closed invariant subspaces of H^{∞} have a similar characterization; they are of the form BH^{∞} where B is a Blaschke product as in Theorem A.

If $1 , the M. Riesz theorem shows that for any inner function <math>\phi$, ϕH^p is complemented in H^p . A bounded projection is given by

$$Q(f) = \phi P(\bar{\phi}f)$$

where P is the Riesz projection of L^p onto H^p .

In this note, we show that for $0 the complemented invariant subspaces of <math>H^p$ are like the ones in H^{∞} .

THEOREM B. Let $0 . If <math>\phi$ is an inner function then there exists a bounded projection of H^p onto ϕH^p if and only if $\phi = B$, where B is a Blaschke product whose zero sequence forms a Carleson sequence.

Research supported in part by the National Science Foundation.

Received by the editors October 20, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 30H05, 46J15.

Key words and phrases. Complemented invariant subspace, Blaschke product, Carleson sequence, Hahn-Banach extension property.

122 W. S. COHN

PROOF. A careful examination of the argument given in [1] to prove necessity in Theorem A reveals that it can be applied (with minor modifications) to prove necessity in Theorem B for p=1. For 0 this can also be done, although the modifications necessary are slightly more difficult; we offer a different approach which depends on some other ideas in the literature and also provides more information.

For $0 , <math>H^p$, while not locally convex, is a locally bounded space whose dual separates points (see [5, p. 6] for the definition of locally bounded). The results of Duren, Romberg, and Shields in [2] show that the closure of the canonical imbedding of H^p in the Banach space $(H^p)^{**}$ is the space B_p of functions f analytic in the disc such that

$$||f||_{B_p} = \int_0^{2\pi} \int_0^1 |f(re^{i\theta})| (1-r)^{-2+1/p} dr d\theta < \infty.$$

Suppose that ϕH^p is complemented in H^p where $0 . Then it is clear that <math>\phi H^p$ has the Hahn-Banach extension property (HBEP) in H^p , that is, if λ is a continuous linear functional on ϕH^p , then λ is the restriction to ϕH^p of a continuous linear functional Λ on H^p . Let $T \colon H^p \to \phi H^p$ be defined by $T(f) = \phi f$. Then T is an isomorphism of H^p onto ϕH^p . We claim that it follows now that the operator $S \colon B_p \to \phi B_p$ defined by $S(f) = \phi f$ is bounded below, i.e. there is a constant c > 0 such that

$$||\phi f||_{B_n} \ge c||f||_{B_n}.$$

It is a result due essentially to Horowitz [4, Theorem 2] (see also [6]) that (*) holds if and only if ϕ is a Blaschke product whose zero sequence is Carleson. If we observe that $S = T^{**} = (T^*)^*$ restricted to B_p where * denotes the adjoint operator, then necessity in Theorem B for 0 follows from the following result.

THEOREM C. Let $(X, ||\ ||)$ be a locally bounded space with quasi-norm $||\ ||$, whose dual separates points. Suppose $T: X \to Y$ is an isomorphism of X onto a closed subspace $Y \subseteq X$. Then the following properties are equivalent.

- (1) Y has the HBEP as a subspace of X.
- (2) $T^{**}: X \mapsto Y$ is bounded below, i.e. there exists a constant c > 0 such that for all $x \in X$,

$$||Tx||_{X^{**}} \geq c||x||_{X^{**}}$$

Here $|| ||_{X^{\bullet\bullet}}$ denotes the usual norm on X^{**} , and if $x \in X$, by $||x||_{X^{\bullet\bullet}}$, we mean the X^{**} norm of the image of x in X^{**} under the canonical imbedding. A similar remark holds for $||y||_{Y^{\bullet\bullet}}$ if $y \in Y$.

PROOF. Suppose (2) holds. If $x \in X$ then $T^{**}x = Tx$. Thus

$$||Tx||_{Y^{\bullet \bullet}} \le ||T^{**}|| \ ||x||_{X^{\bullet \bullet}} \le c^{-1}||T^{**}|| \ ||Tx||_{X^{\bullet \bullet}}.$$

Since T(X) = Y, it follows that for a $c_1 > 0$,

$$||y||_Y \dots \le c_1 ||y||_X \dots$$

for all $y \in Y$.

The reverse inequality

$$||y||_{X^{**}} \leq c_2||y||_{Y^{**}}$$

follows from the boundedness of $i^{**}: Y^{**} \to X^{**}$ where $i: Y \to X$ denotes inclusion. Thus the $|| \ ||_{X^{**}}$ and $|| \ ||_{Y^{**}}$ topologies agree on Y. If $\varphi \in Y^{*}$ then φ belongs to $(Y, || \ ||_{Y^{**}})^{*}$ (the dual of Y with the $|| \ ||_{Y^{**}}$ -normed topology; see [5, pp. 27–28]). Thus $\varphi \in Y^{*}$ implies that $\varphi \in (Y, || \ ||_{X^{**}})^{*}$. Since $(Y, || \ ||_{X^{**}})$ is a topological subspace of the normed space $(X, || \ ||_{X^{**}})$ the Hahn-Banach theorem implies that φ is the restriction to Y of some $\Phi \in (X, || \ ||_{X^{**}})^{*} = X^{*}$. Thus (2) implies (1).

Conversely, suppose (1) holds. Letting $i: Y \to X$ again denote inclusion, (1) implies that $i^*: X^* \to Y^*$ is onto and therefore $i^{**}: Y^{**} \to X^{**}$ is bounded below. Thus

$$||y||_{X^{**}} > c||y||_{Y^{**}}$$

for c > 0 and $y \in Y$. Use the fact that T is an isomorphism to get that

$$||Tx||_{Y^{**}} \geq c_1||x||_{X^{**}}$$

for some $c_1 > 0$ and set y = Tx to conclude that

$$||Tx||_{X^{**}} \geq cc_1||x||_{X^{**}}.$$

Thus (1) implies (2) and the proof of Theorem C is complete.

It remains to prove sufficiency in Theorem B. If ϕ is a Blaschke product whose zero sequence is a Carleson sequence, then by [6, Lemma 21] we may factor ϕ as $\phi = \phi_1 \phi_2 \cdots \phi_m$ where the zero sequence of each ϕ_i is an interpolation sequence. Suppose $\{z_n\}$ is the zero sequence of ϕ_i . Define, for 0 ,

$$(Q_i f)(z) = f(z) - \sum_{n} \frac{b_n(z) f(z_n)}{b_n(z_n)} \frac{(1 - |z_n|^2)^{2/p}}{(1 - \bar{z}_n z)^{2/p}},$$

where $b_n(z) = \prod_{k \neq n} (\bar{z}_k/|z_k|)(z_k - z)/(1 - \bar{z}_k z)$.

An application of the triangle inequality and the fact that

$$\sum |f(z_n)|^p (1 - |z_n|) \le c||f||_p^p$$

for an absolute constant c, shows that $Q_i \colon H^p \to H^p$ is bounded. It is a simple matter to prove that Q_i is also a projection of H^p onto $\phi_i H^p$. Now for $k=2,\ldots,m$ define

$$L_k f = \phi_1 \phi_2 \cdots \phi_{k-1} Q_k (\bar{\phi}_1 \bar{\phi}_2 \cdots \bar{\phi}_{k-1} f).$$

It follows that

$$Q = L_m L_{m-1} \cdots L_2 Q_1$$

is bounded projection of H^p onto ϕH^p . This completes the proof of Theorem B. The following curious fact has been established as well.

COROLLARY. If $0 , then an invariant subspace of <math>H^p$ is complemented in H^p if and only if it has the HBEP as a subspace of H^p .

REFERENCES

- P. Casazza, R. Pengra, and C. Sundberg, Complemented ideals in the disc algebra, Israel J. Math. 37 (1980), 76-83.
- 2. P. Duren, B. Romberg, and A. Shields, Linear functionals on H^p spaces with 0 , J. Reine Angew. Math. 238 (1969), 32-60.

124 W. S. COHN

- 3. J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 4. C. Horowitz, Factorization theorems for functions in Bergman spaces, Duke Math. J. 44 (1977), 201-213.
- N. J. Kalton, N. T. Peck, and J. W. Roberts, An F-space sampler, Cambridge Univ. Press, Cambridge, 1984.
- 6. G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 596-611.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202