EXTENSIONS OF CERTAIN COMPACT OPERATORS ON VECTOR-VALUED CONTINUOUS FUNCTIONS

SURJIT SINGH KHURANA

(Communicated by John B. Conway)

ABSTRACT. For any compact Hausdorff spaces X,Y with $\varphi\colon X\to Y$ a continuous onto mapping, E,F, Hausdorff locally convex spaces with F complete, C(X,E) (C(Y,E)) all E-valued continuous functions on X (Y), and $L\colon C(Y,E)\to F$ a T-compact continuous operator $(\sigma(F,F')\le T\le \tau(F,F'))$, it is proved there exists a T-compact continuous operator $L_0\colon C(X,E)\to F$ such that $L_0(f\circ\varphi)=L(f)$ for every $f\in C(Y,E)$.

In this paper X, Y are compact Hausdorff spaces, $\varphi \colon X \to Y$ a continuous onto function, E, F Hausdorff locally convex spaces over K, the field of real or complex numbers, and C(X, E) (resp. C(Y, E)) all continuous E-valued functions on X (resp. Y). The space $C(Y, E) \circ \varphi$ is a subspace of C(X, E). When E, F are Banach spaces it is proved in [1, 2] that every weakly compact operator $T: C(Y, E) \to$ F has extension to a weakly compact operator $T_0: C(X, E) \to F$ in the sense that $T_0(f \circ \varphi) = T(f)$ for every $f \in C(Y, E)$. Here we will prove the result for general locally convex spaces E, F assuming F to be complete, by using the measure extension techniques discussed in [8]. On C(X, E) or C(Y, E), u will denote the uniform topology. For locally convex spaces G_1, G_2 , an operator $T: G_1 \to G_2$ will be called compact if bounded sets of G_1 are mapped into relatively compact subsets of G_2 . For locally convex spaces we refer to [9]. $\mathcal{L}(E,F)$ will denote the space of all continuous linear operators from E to F. Let $\{|\cdot|_p:p\in P\}$ be the family of all continuous seminars on E. M(X), M(Y) will denote all regular scalar Borel measures on X and Y resp. If $T: (C(Y, E), u) \to F$ is continuous and $f \in F'$, then $f \circ T \in (C(Y,E),u)'$ and so [5, 7] there exists $p \in P$ such that $|f \circ T|_p \in M^+(Y)$ (note for $g \in C(Y)$, $g \ge 0$, $|(f \circ T)|_p(g) = \sup\{|(f \circ T)(h)|: h \in C(Y, E) \text{ and } |f(x)| \le C(Y, E) \}$ $||h||_{p} \leq f$, where $||h||_{p}(y) = ||h(y)||_{p}$ [7]). Here C(Y) stands for all K-valued continuous functions on Y. Also (C(Y, E), u)' = M(Y, E') [5, 7]. $\mathcal{B}(X), \mathcal{B}(Y)$ will denote all Borel subsets of X and Y respectively. For an algebra $\mathfrak A$ of subsets of a set Z, $S(\mathfrak{A})$ will denote all K-valued \mathfrak{A} -simple functions on Z.

THEOREM. Assume F is a complete locally convex space, and let \mathcal{T} be another locally convex topology on F such that $\sigma(F,F') \leq \mathcal{T} \leq \tau(F,F')$. Let $L:(C(Y,E),u) \to F$ be a continuous \mathcal{T} -compact operator, i.e., bounded subsets of C(Y,E) are mapped into relatively \mathcal{T} -compact subsets of F. Then there exists a continuous

Received by the editors July 1, 1986 and, in revised form, October 16, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 28B05, 46G10, 47B05; Secondary 46A22, 47B38.

Key words and phrases. Submeasures, exhaustive submeasures, regular group-valued Borel measures, compact operators.

 \mathcal{T} -compact operator $L_0: (C(X, E), u) \to F$ such that $L_0(f \circ \varphi) = L(f)$ for each $f \in C(Y, E)$.

PROOF. $\mathcal{L}(E,F)$ is the space of all continuous linear operators from E to F. Let \tilde{F} be the weak completion of F and G the space of all continuous linear operators from E into $(\tilde{F},\sigma(\tilde{F},F'))$. For any finite subset $H\subset F'$ and any bounded $B\subset E$, a seminorm m is generated on G:

$$m(Q) = \sup\{|f \circ Q(x)| \colon x \in B, \ f \in H\},\$$

- $Q \in G$. Under the locally convex topology generated by these seminorms, G is a complete locally convex space. The topology on $\mathcal{L}(E,F)$ is the one induced by G. Since L is weakly compact, we get $[\mathbf{3},\mathbf{5}]$ a regular Borel measure $\mu_1 \colon \mathcal{B}(Y) \to \mathcal{L}(E,F)$ with the properties:
 - (I) For any $f \in F'$, $f \circ \mu_1 = f \circ L$.
 - (II) For any equicontinuous set $H \subset F'$, there exists a $p \in P$ such that

$$\sup\left\{\left|\sum f(\mu_1(A_i)(x_i))\right|\right\}<\infty,$$

where the supremum is taken over $f \in H$, all finite Borel partitions $\{A_i\}$ of Y, and all $x_i \in E$ satisfying $|x_i|_p \leq 1$.

(III) For any bounded set $B \subset E$, $\{\sum \mu_1(A_i)x_i\}$, where $\{A_i\}$ varies over all finite disjoint collections of Borel subsets of X and $x_i \in B$, is relatively \mathcal{T} -compact in F.

Let $\{|\cdot|_s\colon s\in S\}$ be the family of all continuous seminorms on G. In the notation of [8, p. 160], let $\mathcal{U}=\{\varphi^{-1}(A)\colon A\in\mathcal{B}(Y)\}$; defines $\mu\colon\mathcal{U}\to\mathcal{L}(E,F),\ \mu(\varphi^{-1}(A))=\mu_1(A),\ A\in\mathcal{B}(Y)$. Each $s\in S$ gives an exhaustive, order σ -continuous submeasure $\dot{\mu}_s\colon\mathcal{U}\to[0,\infty),\ \dot{\mu}_s(B)=\sup\{|\mu(A)|_s\colon A\in\mathcal{U},A\subset B\}$ for every $B\in\mathcal{U}$. As in the proof of [8, Theorem 1, pp. 160–162], these submeasures can be extended to exhaustive, order σ -continuous, regular submeasures $\bar{\mu}_s\colon\mathcal{B}(X)\to[0,\infty)$ with the properties

- (i) for any $s(1), s(2) \in S$, $\dot{\mu}_{s(1)} \leq \dot{\mu}_{s(2)}$ implies $\bar{\mu}_{s(1)} \leq \bar{\mu}_{s(2)}$,
- (ii) for $\varepsilon > 0$, $s \in S$ and $B \in \mathcal{B}(X)$, there exists $B_0 \in \mathcal{U}$, such that $\bar{\mu}_s(B \triangle B_0) < \varepsilon$ (here $B \triangle B_0 = (B \backslash B_0) \cup (B_0 \backslash B)$).

On $\mathcal{B}(X)$ we define F-N topology \mathcal{F} generated by $\{\bar{\mu}_s \colon s \in S\}$ [4, p. 271]. $\mathcal{B}(X)$ becomes a topological ring in which \mathcal{U} is dense. This means the uniformly continuous mapping $\mu \colon \mathcal{U} \to G$ can be uniquely extended to a uniformly continuous mapping $\mu_0 \colon \mathcal{B}(X) \to G$. This μ is countably additive and regular [8].

We shall prove some properties of μ_0 .

(a) First we prove that (II) holds when $\{A_i\}$ are chosen from $\mathcal{B}(X)$. Take any equicontinuous $H \subset F'$. By (II) above there exists a $p \in P$ and M, $0 < M < \infty$, such that $\sup\{|\sum f(\mu(A_i)(x_i))|: \{x_i\}$ a finite subset of E with $p(x_i) \leq 1$, and $\{A_i\}$ a disjoint collection in $\mathcal{U}\} \leq M$, for each $f \in H$. Fix a finite subset $\{x_i: 1 \leq i \leq n\}$ in E with $p(x_i) \leq 1$ for each i, and a finite disjoint collection $\{B_i\}$ in $\mathcal{B}(X)$. Take nets in \mathcal{U} , $A_{\alpha}^i \to B_i$ in $(\mathcal{B}(X), \mathcal{F})$. Put $C_{\alpha}^1 = A_{\alpha}^1$, $C_{\alpha}^i = A_{\alpha}^i \setminus \bigcup_{j=1}^{i-1} A_{\alpha}^j$, $i \geq 2$. Then $\{C_{\alpha}^i: 1 \leq i \leq n\}$ are mutually disjoint and $C_{\alpha}^i \to B_i$. From $\sup\{|\sum f(\mu(C_{\alpha}^i)(x_i))|: f \in H, \{x_i\} \subset E \text{ with } p(x_i) \leq 1\} \leq M$, we get

$$\sup \left\{ \sum |f(\mu_0(B_i)(x_i))| \colon f \in H, \{x_i\} \subset E \right\} \leq M$$

for $p(x_i) \leq 1$ and $\{B_i\}$ a disjoint finite collection in $\mathcal{B}(X)$.

Now we claim that $\mu_0(B) \in \mathcal{L}(E, F)$ for every $B \in \mathcal{B}(X)$. Take a net $\{A_{\alpha}\}$ in \mathcal{U} such that $A_{\alpha} \to B$ in $(\mathcal{B}(X), \mathcal{F})$. Fix $x \in E$. Since $\{\mu(A_{\alpha})(x)\}_{\alpha}$ is a relatively \mathcal{T} -compact set we get $\mu_0(A)(x) \in F$. Using what is proved first in (a) we get $\mu_0(B) \in \mathcal{L}(E, F)$.

(b) Proceeding as in (a) we prove that (III) holds when $\{A_i\}$ are chosen from $\mathcal{B}(X)$.

Because of properties (a) and (b), the mapping $\mu_0 \colon \mathcal{B}(X) \to \mathcal{L}(E,F)$ gives a \mathcal{T} -compact linear continuous mapping $L_1 \colon (S(\mathcal{B}(X)) \otimes E, u) \to F$. The completion of $(S(\mathcal{B}(X)) \otimes E, u)$ contains $C(X) \otimes E$ and therefore also contains C(X,E) (note $C(X) \otimes E$ is dense in (C(X,E),u)). Thus we get a continuous \mathcal{T} -compact operator $L_0 \colon C(X,E) \to F$ (note F is complete). For an $f \in C(Y)$, $x \in E$, and $g \in F'$, $g \circ L(f \otimes x) = g \circ \mu_1(f \otimes x)$. Take a sequence $\{f_n\}$ in $S(\mathcal{B}(Y))$, such that $f_n \to f$ uniformly on Y. Thus $\{f_n \circ \varphi\} \subset S(\mathcal{U})$ and $f_n \circ \varphi \to f \circ \varphi$ uniformly on X. This means

$$g \circ L_0(f \circ \varphi \otimes x) = \lim g \circ L_1(f_n \circ \varphi \otimes x) = \lim g \circ \mu_1(f_n \otimes x)$$
$$= g \circ \mu_1(f \otimes x) = g \circ L(f \otimes x).$$

Thus $L_0(f \circ \varphi) = L(f)$. Since $C(Y) \otimes E$ is dense in (C(Y, E), u) we get $L_0(f \circ \varphi) = L(f)$ for every $f \in C(Y, E)$. This proves the theorem.

I am thankful to the referee for some useful suggestions.

REFERENCES

- 1. F. Bombal, On weakly compact operators on spaces of vector-valued continuous functions, Proc. Amer. Math. Soc. 97 (1986), 93-96.
- 2. F. Bombal and B. Rodriguez-Salinas, Some classes of operators on C(K, E). Extensions and applications, Arch. Math. 47 (1986), 55-65.
- 3. J. K. Brooks and P. W. Lewis, *Linear operators and vector measures*, Trans. Amer. Math. Soc. 192 (1974), 139-162.
- L. Drewnowski, Topological rings of sets, continuous set functions, integration. I, II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 269–286.
- A. Katsaras and D. Lin, Integral representations of weakly compact operators, Pacific J. Math. 56 (1975), 547-556.
- S. S. Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195-211.
- Topologies on spaces of vector-valued continuous functions. II, Math. Ann. 234 (1978), 159-166.
- 8. _____, Extensions of group-valued regular Borel measure, Math. Nachr. 97 (1980), 159-165.
- 9. H. H. Schaeffer, Topological vector spaces, Macmillan, New York, 1966.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242