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ABSTRACT. By using the theory of groupoid equivalence of P. S. Muhly,

J. N. Renault and D. P. Williams (cf. [5, 7]), we identify the relation between

the C*-algebra of a foliated manifold and those of its regular covering foliations.

1. Introduction. Let (M,7) be a foliated manifold. Let ir: M —► M be a

regular covering. Then there is a unique covering foliation (M, 7) in which the

leaves are exactly the preimage of the leaves in {M,7). A natural question is

to understand how the C*-algebras C*(M, 7) and C*ÍM, 7) of the foliations are

related [2]. An identification of such relations would, to some extent, reduce the

classification of C*-algebras of all the foliations of a manifold to that of the universal

covering, which is often much more accessible. For instance, the classification of the

C*-algebras of all the ordinary foliations of the plane is known [12], while the same

classification for all hyperbolic two-manifolds is a huge problem. In many cases

using such a relation, the Connes conjecture [2] about A"-theory of foliations may

reduce to that of simply connected manifolds. (For instance, Example 9 below.)

J. Renault introduced the notion of "equivalence of groupoids" in [7]. More

recently P. Muhly, D. Williams and Renault [5] showed that the C*-algebras as-

sociated to equivalent groupoids are strongly Morita equivalent. Using this result,

we determine precisely the relation between C*{M, 7) and C*iM, 7) in Theorem

4. Then we introduce the notion of covering groupoids and restate Theorem 4 in

a more general situation (Theorem 7). We then indicate some applications with

several examples. We follow the definitions and notation of [5].

We thank R. Zimmer for valuable discussions concerning homogeneous foliations.

We also thank J. Renault and D. Williams for sending us a copy of [5].

2. The main theorem. Let G(M, 7) and G(M, 7) be the holonomy groupoids

of the corresponding foliations. Assume both are Hausdorff. Let T be the covering

group of 7r: M —► M. The T-action on M can be naturally extended to G(M, 7) by

sending [7] to [7*7] for a representative path 7 in M and g eT. Therefore we have

a transformation groupoid G(M, 7) x T, with the composition law (7, g)(^g,g') =

iï,gg'). Let G = G(M,J), H = G{M,f) x T, and Z = G(Af, 7). Clearly, the

unit spaces are G° = M and H° = M. Define p: Z -» G° and a: Z -* H° by

pi¿¡) ss 7r(r(7)) and (7(7) = s(7). Both are continuous open maps. The space Z is
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then canonically a right G(M, 7)-space, and also a right T-space. Let

Z * H = {(7i, (72, g)) eZxH) s(7i) = r^2)g}.

Then the map from Z * H —► Z defined by sending (71,(72,0)) to 71(72!?) is

continuous. This defines Z as a right iï-space. The action of H on Z is free and

proper, so Z is actually a principal .//-space.

In order to make Z a left G-space, we need to examine more closely the leaf

covering groups and the holonomy structures.

LEMMA 1. Let n: M —► M be a regular covering manifold with covering group

r, N C M a connected submanifold, and N a connected component of 7r_1(A).

Then the restriction of it to N is also regular, with the covering group T^ being a

subgroup ofT.

PROOF. The covering group T = 7Ti ÍM)/tti (M) acts on 7r_1 (A) freely, and prop-

erly discontinuously. Let T^ be the subgroup of T that leaves N invariant. Then

T^ acts on N also freely, and properly discontinuously and N ~ N/Fj^.    Q.E.D.

In particular, if Lx is the leave in (M, 7) containing x G 7r_1(x), where x G M,

then Lx is a regular cover of Lx. We denote the covering group by rx. On the

other hand, for each x e M, there is a holonomy group Gx, and we have the

holonomy group bundle {Gx} over M. If xi, x2 are on the same leaf, then any path

7 connecting xi and x2 induces an isomorphism 7* : G%\ -^ Gxx\ by mapping [71] to

[771 7-1]. As a local homeomorphism, the covering map it induces an embedding

?rx : G% — G% for each x G ir'1 (x).

LEMMA 2. The group W*{GX} is a normal subgroup of Gx. Equivalently,

KÍG¡\) = KÍG¡¡) for ~xi,~x2 e *-\x) ifLXl = LX2.

PROOF. Let a (¿v) be the quotient map from 7Ti(Lx) (^(Lj)) onto G% (G|).

Then the following diagram commutes:

xiiL*)0-^-* MLx)

i     .     I«
Gx   c_S_^   Gl

Let aig) be any element in Gx and h G G|. Then a diagram chasing produces

some h G ni{Lx) such that cnr*(/i) = 7rx(/i). There is hi G 7Ti(Lx) such that

K(hi) = oKWq"1 °y Lemma 1. Thus aig^H^aig-1) = 7r*à(/i,).    Q.E.D.
Thus we may form the quotient holonomy group bundle {Gx/G¡} over M. There

is an obvious group homomorphism qbx : Tx —>■ Gx/G¿ defined as follows. An el-

ement g e Fx corresponds to a point xg G 7r-1(:r) fl Lx if we fix x corresponding

to the unit e. A path 79 starting at x and ending at xg gives a loop 7r(79) in M

representing an element <j>x{g) in Gx, whose class in Gx/G| is uniquely defined

by g. Given any [7] in Gx, there is a preimage 7 in Lx starting at x. The point

r(7) G 7T_1(x) fl Lx corresponding to some g G Tx. So (/>x is onto.

DEFINITION 3. The covering map it: (M, 7) —<• (M, 7) of foliations is said to

be regular if the map qb is an isomorphism from the leaf covering group bundle to

the quotient holonomy group bundle.
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By the preceding discussion qb is an isomorphism if and only if qbx is injective for

all x G M. The following is the main theorem.

THEOREM 4. Let it: M —* M be a regular covering with covering group T.

If it: ÍM,7) —► (M, J) is also a regular covering map of foliations, then the C*-

algebras C*iM, 7) and C*iM, 7) * T are isomorphic, where the T-action is induced

from that on the holonomy groupoid GÍM, 7).

LEMMA 5. Assume n: (M, f) —► (M, 7) is regular. Then Z = GiM,7) is

naturally a left principal GÍM, 7)-space.

PROOF. Let [7] e GiM,7) and [7x] G GÍM, 7), such that 7r(r(7i)) =.«(7).
There is a unique path 7 such that 7r(7) = 7 and 0(7) = »"(71). We define a

composition by [7] [71] = [771]. It is easy to check that a particular choice of 7

and 71 is irrelevant. This is clear for 71. Assume [7'] = [7], 7r(7') = 7', and

sil') = r(7i)- Denote x = r(7) and x = r(7). Then 7r(7'7-1) = 7;7_1 ~ 0 in

Gx. Together with the assumption Tx ~ Gx/G|, this implies that r(7') = x and

[7] = [7'], as G| is included in G%.

The G-action on Z is then automatically free. If [771] = [71], then [7] is a unit

and [7] is a unit. Similarly the map G * Z —► Z is proper since the left action of

GÍM, 7) on itself is proper.    Q.E.D.
PROOF OF THEOREM 4. We need to check that our choice of G,H and Z

yields a groupoid equivalence [5, Definition 2.1] and then apply [5, Theorem 2.8].

We have shown that Z is a left principal G-space (Lemma 5) and a right principal

//-space. The G-action and the right GÍM, J)-action on Z commute because of

the associativity of groupoid composition. If [7] G G, [7], [71] G Z are such that

siî) — riîi), 7r('y) = 1, then for any g G T, we have

N([7i]ff) = [l][li9) = [(70H71SO] = [(771)0] = (N • [7i])0.

Thus the left G-action and the right T-action commute. For each m G M = H°,

the preimage a-1 im) is exactly the leaf containing m in (M, 7). Thus the map a

induces a homeomorphism from G\Z = G(M, 7)\G{M, 7) onto H°. Similarly, the

map p: Z —► G° induces a homeomorphism from Z/H — GÍM, 7)/{GÍM, 7)xT} —

M/T onto M.    Q.E.D.
Undoubtedly Theorem 4 can also be proved directly with strong Morita equiva-

lence by finding a suitable imprimitivity bimodule (which is CCÍGÍM, 7)) from our

choice of Z). However the Muhly-Renault-Williams theorem provides us a partic-

ularly convenient general set-up which greatly simplifies the argument. This seems

to verify their prediction in the introduction of [5]. Of course, the approach of

strong Morita equivalence (introduced by M. Rieffel, cf. [1]) is crucial, both here

and in [4, 5].

We now generalize Theorem 4 to the setting of abstract groupoids. Let G, H be

second countable locally compact groupoids with Haar systems A and p, respec-

tively. Assume that both unit spaces G° and H° are paracompact and arcwise

connected. Suppose that there is a regular covering map it: G° —> H° with cov-

ering group T, and that the orbit Ox is connected for every x G H°. Let Tx be

the covering group of an orbit Ox over Ox, where x G 7r_1(x).   Then there is
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again an embedding it* : G| <—► Gx of isotropy groups and a group epimorphism

<t>x:Yx-»G*JG%.
DEFINITION 6. With G and H given as above, we say that G is a regular

covering groupoid of H if the maps qbx are injective for all x G H°.

Analogous to Theorem 4, we have

THEOREM 7. Let G be a regular covering groupoid of H with covering group T.

Then C*(G, A) x T is strongly Morita equivalent to C*iH,p).

3. Applications.

EXAMPLE 8. The condition that the covering map -k: M —> M is regular does

not automatically imply that the map ir: (M, 7) —* (M, 7) is regular. Consider

the simplest example. Let M — R2 and M = R x S1. Then the projection

7r: M —► M is regular. Let 7 be the foliation by parallel lines with a fixed angle

a to the horizontal direction, 0 < a < tt/2. Then tt: (M, 7) —* (M, 7) is regular

unless a = it/2, when (M, J) is foliated by parallel S1. Of course then C*ÍM, 7) =

C*ÍM, 7) — Gn (R)®iC. We see that the regular coverings of foliations are "generic"

in the sense that the deck transformations take a general position with respect to

7. This fact will become clearer in Example 10.

EXAMPLE 9. Let (M, 7) be an annular with Reeb foliation. Let (M, 7) be its

universal covering foliation. Then [12, Theorem 4.1.2] tells us that C*iM,7) is

isomorphic to

A2 = {/eCo([0,l),M2(/C))|/(0)=(;   °)}.

One verifies that it: (M, 7) —> (M, 7) is regular, and Theorem 7 yields that

C* (M, 7) is isomorphic to A2x*Z by the well-known facts that foliation G*-algebras

are stable [4] and strongly Morita equivalent stable G*-algebras are isomorphic [1].

(For a constructive proof, see [14].) This explicit characterization of C*-algebras

of foliated Reeb components provides an alternative proof of the results of A. M.

Torpe [9],

EXAMPLE 10. Both situations described in Examples 8 and 9 are special cases

of the following [11]. Let £ be a closed two-manifold and 7 a structurely stable flow

on S. Let M = E \ {singularities}. Then the universal covering manifold M — R2

and 7r: (M, 7) —► (M, 7) is regular with the fundamental group T of M being a free

group of finitely many generators. The structure of C*(M, 7) is given in Theorem

4.3.1 of [12], which shows that these G*-algebras are classified by distinguished

trees. Thus, applying Theorem 4, we get a characterization of C*(M, 7).

More generally, let (M, 7) be any foliated hyperbolic two-manifold with cor-

responding Fuschian group V and the covering foliation (H, 7), where H is the

hyperbolic upper half-plane. If the covering map it: (H, 7) —» (M,7) is regular,

then we can characterize C*(M,7) by [12] and Theorem 4. The same method

actually applies to even more general situations. Let T be a lattice in a connected

semisimple Lie group. Suppose that the homogeneous space M = T\G/K admits

a foliation 7, then often we can describe C*(M, 7) in terms of C*(G/K, 7). For

instance, in light of Thurston's program, we can hopefully reduce the study of C*-

algebras of foliations of any hyperbolic three-manifolds to that of H3 (or H2 x R)

and actions of three-manifold groups.
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Let G be a connected Lie group, with a connected subgroup H and a lattice T.

Let 7 be the foliation of T \ G by the cosets of H. From the proofs of Theorem 4

and Proposition 1.5 of Part I of [10] we have

PROPOSITION 11. // the regularity condition iDefinition 3) of the covering G —■*

T \G holds, then the C*-algebra C*(T \ G, 7) is isomorphic to the cross product

G0(r\G) x H.

The following observations are due to Professor R. Zimmer. See [13] for relevant

results in Lie foliations.

LEMMA 12. Let Hg be the algebraic hull ofgTg-1 C\H with Lie algebra t)9, for
[g) e G/H. Then the regularity condition holds if the induced adjoint representation

of Hg on the quotient q/\) of the corresponding Lie algebra is faithful.

EXAMPLE 13. Consider the horocycle flow where G is SL(2;R), H is the 1-

parameter nilpotent subgroup N consisting of strictly upper triangular

matrices. Then the regularity condition holds. It follows from Theorem 4 that

C*(T \ G, horocycle) ~ CoiS1 x R) x T, since G/N ~ S1 x R. To see the faithful-

ness of Ad/v, we recall the equality

-ii -0-
In the general situation, where G is a semisimple Lie group and H is an arbi-

trary nilpotent subgroup, the regularity condition still holds. In fact any nilpotent

element x is contained in a copy of SL(2, R) in G and the argument above shows

that the induced action of adx on ß/f) is nonzero.

EXAMPLE 14. As an example showing that the regularity condition may fail

for general solvable subgroups in semisimple Lie groups, we consider again G =

SL(2,R) and T = SL(2, Z), where H is the {ax + b} solvable subgroup consisting

of the upper triangular matrices. Then adx = 0 for x = (° ¿) in the Lie algebra f).

However the failure of the regularity condition is only an exceptional rather than

general phenomenon, as we observed earlier in Examples 8 and 10.

EXAMPLE 15. Let G be a semisimple Lie group of rank r > 2 with trivial center.

Let 7 be the homogeneous foliation on T \ G induced by a solvable subgroup H of

G. Then the regularity condition holds.

Without loss of generality, we may assume G is simple. The adjoint represen-

tation of an abelian subalgebra of f) is clearly faithful. Take a nilpotent generator

x e t). We may consider t) as contained in the upper triangular matrices and identify

x as an elementary matrix Eij, with 1 in the i,jth entry and 0 elsewhere, i < j.

Since r > 2, there is / distinct from i and j, so that [Eij, En) = —Eij.

EXAMPLE 16. Let G again be semisimple, but H an abelian subgroup of G

with H n Z{G) = 0. (For G = SL(2,R) we get in particular the geodesic flows on

T \ G.) Again the regularity condition holds. To see this, let H be the algebraic

hull of H. Then H is an abelian algebraic group. It suffices to see that the adjoint

representation of H is faithful on g/i). There is a unique decomposition H = TxN,

where T is a torus (i.e., consisting of algebraic semisimple elements) and N is

nilpotent. Suppose g e H acts trivially. Let g = tn, so that t and n act trivially.

This implies immediately that t G ¿?(G) n H = 0.  Since n acts trivially, so does

0    1

0    0
0 0
1 0



360 XIAOLU WANG

Xn, a corresponding nilpotent generator. Again there is a Lie subalgebra i)2 of g

containing Xn that is isomorphic to S1(2,R). There is some Xn G i)2 such that

[An, Xn) = A, which is semisimple, does not commute with Xu.

We conclude with a problem: Determine if the following converse of the Muhly-

Renault-Williams theorem is true. If both G and H are locally compact principal

groupoids with Haar systems X,p such that G*(G, A) and C*iH,p) are isomorphic

then there is a groupoid equivalence Z between G and H.
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