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ABSTRACT. Let A\ and A2 be (unbounded) selfadjoint operators on a Hubert

space M which commute on a dense linear subspace of U. To conclude that A\

and Ai strongly commute, additional assumptions are necessary. Two proposi-

tions which contain such additional conditions are proved in §1. In §2 we define

different commutants of unbounded operator algebras (form commutant, weak

unbounded commutant, strong unbounded commutant) and we discuss the re-

lations "between them and their bounded parts. In §3 we construct a selfadjoint

»-representation of the polynomial algebra in two variables for which the form

commutant is different from the weak unbounded commutant.

1.   Conditions for strong commutativity of selfadjoint operators. Let

>/ be a complex Hubert space. As usual, we say that a bounded operator C and

a possibly unbounded operator T on H commute if CT Ç TC. We say that two

selfadjoint operators Ai and A2 on M strongly commute if the spectral projections

of Ai and A2 mutually commute. This is the case if and only if (A + z)~l and A2

commute for some (and then for all) z G C\R.

In Propositions 2 and 3 and in Lemma 1 we assume the following. Let Bi and

B2 be symmetric linear operators and let A be a selfadjoint operator acting on the

same Hilbert space M such that D(Bi) Ç P(A) and DÍB2) Ç DÍA). We assume
that there exists a constant A such that

(1) ||5,£>|| < A||(A-M'M|    for/= 1,2 and for all ^> G/?(Bi).

Upon the formulation, the following Proposition 2 is due to N. S. Poulsen [5,

Lemma 2). The author is indebted to P. E. T. j0rgensen for this information.

Poulsen's proof is essentially based on Nelson's theorem on analytic domination [4,

Theorem 8]. Our proof given below uses only elementary operator theory, so it

seems to be of some interest in itself. The following lemma is used in the proofs of

Propositions 2 and 3 below.

LEMMA 1. Suppose I e {1,2}. Suppose that there is a linear subspace di Ç

DiABi) n DÍBiA) such that AB¡tp = BiAtp for <p e Vi and such that Vi is a core

for A.
Then, B¡ is selfadjoint and B¡ and A strongly commute.

PROOF. From assumption (1) it follows that there is a bounded operator A; on

U such that B¡tp = A;(A + i)<p for <p G D{Bi). Since D¡ and so BÍB¡) is a core for
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A and hence for A; (A + i), we get

B¡ = (A,(A + i) \ D(B,)y = (A,(A + i))* = (A - i)X?.

Putting F; := (A - ¿)|A — ¿|-1A;*, we therefore have

(2) Bt = \A-i\Yt.

Since y,* =XiiA + i)\A-i\-1,Bi = X¡{A + i) = y,*|A-z'| on D{Bi). That is, since
Bi is symmetric, we have

(3) Bi = \A-i\Yi = Yt*\A-i\   onP(ßt).

For tpe Di,

(A + i)Bi<p = (A + t)|A - i\Ynp = )A- i\ÍA + i)Yttp

= Bi{A + i)tp = \A- i\Yi{A + i)tp

and so (A + i)Y¡tp = Y¡ÍA + i)tp. Since D¡ is a core for A, (A + ¿)£>¡ is dense in M.

Hence Y¡ commutes with (A-M')_1. Consequently, Y* commutes with (A —z')_1 and

so with |vi-»|. Putting this into (3), we get B¡ = Y¡*\A-i\ = )A-i\Yl* = |A-¿|F¡
on D{Bi). Since P(J9i) is dense in M, Yt = r¡*.

We prove that B[ is selfadjoint. For suppose that B*tp = ztp for some tp e M

and for z = i or z = —i. Then, from (2), Y¡tp = z\A — i\~1f>. Thus

(Ytp, tp) = z(\A - i|-V, f) = *|| \A - i)-1/2<p\l

Since Yi — Y*, (Yi<p, tp) is real and so )A — i\~1'2(p = Q. Hence tp = 0. This shows

that B¡ is selfadjoint.

Since B¡ = B¡ as just shown, (2) gives B¡ — \A — i\Y¡. Since (A + ¿)-1 commutes

with Yi, the latter yields

(A + i)-1^ = (A + i)'1 \A - i)Yi = \A- i\YiiA - i)'1 =B¡(A + z)"1 on D(B¡),

i.e., Bi and A strongly commute.    D

PROPOSITION 2. Suppose that there are linear subspaces Di Ç Z?(Ao;)nP(B¡A)

for I = 1,2 and £>,2 Ç DÍBiB2) n DÍB2Bi) such that ABt<p = B¡Atp for tp e Dh
BiB2tp = B2Biip for tp G Di2 and such that Vi, D2 and Pi2 are cores for A.

Then Bi and B2 are strongly commuting selfadjoint operators.

PROOF. Because of Lemma 1, it only remains to show that the selfadjoint

operators Bi and B2 strongly commute. To prove this, we use the notation and

the facts established in the proof of Lemma 1. By (3),

BiB2i}) = )A- i\Yi)A - i\Y2xl> = B2Bix¡j = )A - i)Y2)A - i\Y^

for tp G #i2- Since Y\ and Y2 both commute with A and ker|A — i) = {0}, this

implies that Y^IA — i)ip = Y2Yi\A — i\tp for tp e Di2. Because Di2 is a core for

A and so for \A — i\, )A — i)Di2 is dense in )1. Therefore, Y{Y2 = Y2Yi. Hence

Yilh = Yi\A- i)Y2_ = |A - i\Y2Yi =jf2Yi on D(B2), i.e., Yx commutes_with B~2
and hence with (B2 + %)~l. Using Bx = \A - i\Yi and the fact that B2 and A

strongly commute, we therefore obtain

(B; + i)'1Bi' = (B2' + i)-1\A-i)Y1 = \A-i)YiiB'2 + i)-1

^BlíB^ + i)-1    onD(B¡).

This implies that Bi and B2 strongly commute.    D
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PROPOSITION 3. Suppose that there are linear subspaces Do Q £>ÍBiB2) il

DÍB2Bi) n DÍA2) and Di Ç DiABi) n D{BiA) such that BxB2tp = B2Bnp for
<p e Do and ABiip = BiAtp for tp e Di. Suppose that Do is a core for A2 and that

Di is a core for A.

Then, Bi is selfadjoint and (5i + ¿)-1 commutes with B2. In particular, if in

addition B2 is selfadjoint, then Bi and B2 strongly commute.

PROOF. From Lemma 1 we conclude that Bx is selfadjoint and Bi and A strongly

commute. By (1), there is a bounded operator A2 on M such that B2 = X2(A + i)

on DÍA). Note that DÍA) C DÍB~2) because of (1).
Suppose tp G DÍA2). Since Do is a core for A2, there is a sequence (<pn; n G N)

of vectors from Do such that tp = lim„ tpn and A2tp = lhnn A2tpn in M. We have

for n G N,

B2iBi + i)tpn = A2(A + i){Bi + i)tpn = (Si + i)B2tpn

= ÍBi+i)X2ÍA + i)tpn.

Since DÍA2) Ç DiÇBÏ + i)(A + <)) by (1), <pn G D{{B¡ + i){A + i)) for n G N.
Therefore, since Bi and A strongly commute, (4) gives

(5) X2(B¡ + i)ÍA + i)pn = ÍBi+i)X2iA + i)tpn    fornGN.

By (1),

\)(B¡ + i)ÍA + i)ç\\ < A||(A + ¿)2c|| + ||(A + 0î||    for c G DQ.

Thus, letting n —► 00, the limit in (5) exists and yields

(6) X2(B¡ + i)(A + i)tp = (B¡ + i)X2ÍA + i)tp.

Substituting tp = (A + i)~1xp with tp G DÍA), (6) leads to

(7) X2(B~i + i)ip = (El + i)X2xP   for all tp € DÍA).

Since Bi and A strongly commute, DÍA) is a core for Bx. Hence (7) holds for all

tp e DiBi) and shows that A2 and Bi commute. For tp G DÍB2), we therefore

obtain

ÍB¡ + i)~lB2tp = (B~i+ i)-'X2(A + i)tp = X2(B¡ + i)-\A + i)tp

= A2(A + i)(B¡ + i)' V = BiÇËl + i)' V,

where we used once more the strong commutativity of Bi and A. Hence

(B¡ + i)-1B^CB2'íB¡ + i)-1.    G

2. Commutants of unbounded operator algebras. We begin with some

terminology. It will be also used in §3.

Let D be a dense linear subspace of a Hubert space M. An O*'-algebra A on D is

a »-algebra of linear operators defined on D and leaving D invariant which contains

the identity map I of D. The multiplication in A is the composition of the operators

and the involution in A is the map a —► a+ := a* \ D. Suppose that A is an O*-

algebra on D. Define A¡ := {a G A: ))tp)) < \)atp)\ for all <p G D}, DÍA) := f]a€A Día)

and D*ÍA) := f]a€A Día*). The O'-algebra A on D is called closed if D = DÍA) and
selfadjoint if D = D*iA). The graph topology of A is the locally convex topology

tfi on D which is defined by the seminorms || • ||a := ||a- ||, a G A.  We denote by
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BAÍD,D) the vector space of all continuous sesquilinear forms (linear in the first

and conjugate-linear in the second variable) of D\1a\ x D\tA\ and by £a{D,){) the

vector space of all continuous linear mappings of P|t^| into M. If c G B¿{D,D),

then the sesquilinear form c+ defined by c+i<p, tp) := c(ip,<p), tp,tp e D, is also in

Ba(D,D).
Let 21 be an abstract *-algebra with unit element 1. A ^representation of A

on D is a »-homomorphism of 21 onto an O* -algebra on D which maps 1 into the

identity map on D. A »-representation 7r is called selfadjoint if the 0*-algebra

7r(2l) is selfadjoint. As usual, we write Tn^ if T is a closed linear operator affiliated

with the von Neumann algebra 91.

DEFINITION 4.   Let A be an O* -algebra on D. Define

Acf — {c e BaÍD, D):cía<p,tp) = c(tp,a+tp) for all ¡p,tp e Dand a G A},

ACW = {T e CA(D,)i):(Tatp,iP) = (T<p,atp) for all p,tp G Dandae A},

Acs = {Te íAÍD,)i):TD Ç DandTatp = aTtp for all tp e Dandae A},

A'w = {TeBÍH):T\DeAcw}    and   A'„ = {T G B(K):T \ D G Acs}.

We call Aj the form commutant, Aw the weak unbounded commutant, Acs the

strong unbounded commutant, A'w the weak commutant and A's the strong commu-

tant of the O*-algebra A.

REMARKS. 1. We identify an operator T on D with the associated sesquilinear

cT(<p,tp) := (Ttp,tp), p,tpeD. Then, obviously, Acw Ç A).

2. The definition of Acw can be slightly reformulated as Acw = {T e ÍA (D, M):TD
C D'ÍA) and Ta<p - ia+)*T<p for all tp G D and a G A}. Hence Acs Ç Acw and

A's Ç A'w. Moreover, from the above characterization we see that if A is selfadjoint,

then Acs = Acw and A's = A'w.

3. If A'w = A'g, then it follows easily that A's is a von Neumann algebra (see e.g.

[2]). In this case we write A' for A's = A'w.

4. From the definition it is clear that Aj is invariant under the involution c —► c+.

In §3 we show that a similar result for A^, or Aca is not true in general even not if

A is selfadjoint.
5. If A) = Acw = Acs, then Ac := Acs is an 0*-algebra on D.

PROOF. Suppose T G Ac. Then, by the invariance of Aj under the involution

c —► c+, (cT)+ e Aj - Acw. Hence there is a Ti G Acw such that (cT)+ = cTl.

Obviously, Ti =T* \ D, so that T* \ D G Ac. Since Acs is an algebra of operators

leaving D invariant, this implies that Ac is an 0*-algebra on D.

In §3 we shall see that the selfadjointness of an 0*-algebra A is not sufficient

to ensure that Aj = Acw. A simple sufficient condition (which applies also to some

nonselfadjoint 0*-algebras) for the equality of Aj and Acw is given by

PROPOSITION 5. Let A be an O*-algebra on D. Suppose there is an indexed

subset {cij,j G 3} of operators from A¡ such that a2D is dense in H for each j G Z

and such that || • ||aj, j G Z, is a directed family of seminorms generating the graph

topology tfi on D.  Then, Aj — Acw.

PROOF. (We generalize an argument used in [6].) Since always Aw Ç Aj, we

have to prove that Aj Ç Acw. For suppose c G Aj. Since c G BaÍD, D), there is an
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index j G 3 and a constant A such that )c(<p, tp)\ < A||oj<p|| ||oj^»|| for all <p,ip e D.

Since Oj G Aj, (/'(äj), || ■ ||¡ := ||ôj ■ ||) is a Hubert space. Hence there exists a

bounded operator A on M such that c(<p,tp) = (Xajtp,a^tp) for all p,tp e D. Since

a(+ G A, we have for tp,tp e D,

(8) c(a ftp, tp) = (Xasa+tp, astp) = c(<p, astp) = (Xa^tp, aftp).

Define Y(a^tp) :— tp for tp G D. Since a¡ G Ai, Y" is a bounded operator from

djP into #. Clearly, Y has an extension to an operator from B(#) which is again

denoted by Y. Letting c = a2tp, (8) implies that (Xa,afip,Yc) = (Aa^, c) for all

ç G a2D. Since a2D is assumed to be dense in M, Y*Xa,a~f~tp = Xa,tp for tp e D.

Thus

c(tp,tp) s= (Y*Xaja+tp,aitp) = (Xa,a+tp,Ya¡ip) = (Xa^a+tp^)

for tp,tp G D, that is, c = cXaa+. Obviously, OjO^ G £AÍD,)i). Since c G Aj,

Xa-,a+ e Acw.    D

PROPOSITION 6. Suppose A is a closed O*-algebra on D and 91 is a von Neu-

mann algebra contained in the strong commutant A's. Let T be a closed linear

operator on M which is affiliated with 91. If D Q D(T) and T \ D G CaÍD, M), then
T\DeAcs.

PROOF. Let T = U\T\ be the polar decomposition of T and let |T| = /0°° A dE(X)

be the spectral decomposition of the positive selfadjoint operator |T|. Since Try9t,

U e 91 and |T|??9l. Therefore, |T|£;(0,n) G 91 and hence Tn := TE(0,n) =

U\T)E(0,n) e 91 for n G N. Since 91 Ç A's, we have TnD Ç D and Tnap = aTntp

for a e A, tp G D and n G N. Suppose tp e D and a G il. From Tip = U\T)tp —

limn U)T)EÍ0,n)tp = limnT„i£> and Tatp — limTna<p we therefore conclude that

Tip G D(a) and otTtp = Tap. Since A is a closed 0*-algebra on D, D = f)a€¿ Día).

Thus Ttp e D and aTtp — Tatp for all tp e D and a e A which gives the assertion.    D

PROPOSITION 7. Let A be an O*-algebra on D and let 91 be a von Neumann

algebra contained in the weak commutant A'w. Suppose T is a closed linear operator

on H such thatTnN, D ç D(T) andT \ D G ÍA(D,U). Then, T \ D G Acw.

PROOF. Up to the following slight modification, the proof follows the lines of

the preceding proof. Since Tn G 91 Ç A'w, we have Tnatp = a*Tnp for a G A, tp e D

and n G N. Since D*ÍA) = f]a€A Día*) by definition, it follows that TD Ç D*ÍA)
and similarly as above T \ D G A'w.    D

COROLLARY 8. Suppose A is a selfadjoint O*-algebra on D andT is a closed

linear operator on M which is affiliated with the von Neumann algebra A' (= A's —

A'w) such that D ç DÎT) andT \ D G ÍAÍD,M). ThenT \ D e A% = Acw.

The converse of Corollary 8 is not true in general. To be more precise, if T is a

symmetric linear operator contained in the strong (or weak) unbounded commutant

of a selfadjoint O*-algebra A, then T is not necessarily affiliated with the von Neu-

mann algebra A'. (A counterexample is described in Remark 2, in §3.) Concerning
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the latter assertion, the following condition for an 0*-algebra A on D is useful:

There are an indexed set {ay;) G 3} of symmetric operators from

A and an indexed set {c*j;j G 3} of complex numbers such that

(I) a2  is essentially selfadjoint on D for each j G 3 and such that

II ■ lUj+aj» j G 3, is a directed family of seminorms generating the

graph topology 1A on D.

Conditions of a similar kind have been invented and used by Araki and Jurzak in [1].

The above condition (I) is a (slight) modification of the condition (Ig) formulated

in [1, p. 1015].

LEMMA 9. Let A be a closedO*-algebra on D satisfying (I). Then, for each) G 3,

5j ¿5 a selfadjoint operator. The O*-algebra A is then selfadjoint, Aj — Acw = Aca

and A'w = A's. Moreover, Ac := Aca is an O*-algebra on D and A1 :— A's is a von

Neumann algebra.

PROOF. Let ) G 3- Since ayD Ç D, ker(o* + i) Ç ker((a2)* + /). Since af is
essentially selfadjoint by (I), the latter is trivial, so that a¡ is selfadjoint.

The assumptions concerning the seminorms || • ||a,+a¡í j G 3, imply that D(A) =

Hjgj P(aj -I-aj). Therefore, since A is closed, D = Djgj Pity) = Hjeo ^ia*)- Hence

D = D*(A), so that A is selfadjoint.

We prove that Aj = Acw. Without loss of generality we can assume that a^ + a^ G

Ai for each j G 3- Then —q¡ belongs to the resolvent set p(öy) of the selfadjoint

operator <xy. Hence -|aj|2 G p((äy)2) and Aj := (07+ aj)2((ô]')2 + |ûj|2)-1 is an

isomorphism of the Hilbert space U. Since a2 is essentially selfadjoint, (a2 + a2)D

and so (a¡ + a^)2D = Aj(a2 + |ckj |2)P is dense in U. Thus the assumptions of

Proposition 5 (with aj replaced by a} + a}) are satisfied and we conclude that
¿c _   /¡c
•"/ — "w

The other assertions follow from the remarks after Definition 4.    D

Under more restrictive assumptions the assertion of the following proposition

has been stated in [1, Theorem 3].

PROPOSITION 10. If T is a symmetric operator from Ac, then T is selfadjoint

and affiliated with the von Neumann algebra A'.

PROOF. Suppose a G A. Since T G LAÍD, )i) and tA is generated by the directed

family of seminorms || • ||aj+aj) j S 3, there is j G 3 and a constant A such that

||a*?|| ^ M\iai +ai)'P\\ and ||ÏV|| < A||(oj -r-aj)y>|| for <p e D. Moreover, by Lemma

9, äj is selfadjoint. Therefore, Proposition 3 applies (in case Bi = a, B2 = T,

A = ôfj, Do = Di = D) and shows that T is selfadjoint and that (T + ¿)-1 and a

commute. Hence (T+i)~1D Ç D(ä) for all a G A. Since A is closed, D = f)aeA D(a),

so (T + i)-^ Ç D. Therefore, (T + i)'1 G A' which implies TnA1.    U

3. A counterexample. In this section let 21 denote the »-algebra with unit

of all complex polynomials in two commuting hermitian indeterminants xx and 2:2-

Our main result in this section is

PROPOSITION 11. There exists a selfadjoint * -representation it of'21 and an

operator T G 7r(2l)£, such that D is not contained in D(T*). In particular, 7r(2l)f 7^
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Before proving Proposition 11, we recall some notation and some facts mainly

taken from [8 and 9]. Let A and B be selfadjoint operators on a Hubert space

M with bounded inverses A := A-1 and Y := B_1. Suppose n,m G N. Let

Qnm denote the projection of M onto the closed linear span of [Xk,Yl)M, where

k — 1,... ,n and I = 1,... ,m, and let Dnm := XnYm(I — Qnm))i. By Lemma 1.2

in [8], we have

(a) XkYltp = YlXktp for tp e (I -Qnm)X, k,l,n,m G N, k < n, I <m.

Put Qko = Qok — 0 for k = 0,1,_Consider the following conditions:

(I)nm if Xtp e QnmM for some ¡p G M, then tp G Qn-i,m^-

(II)nm If Ytp e QnmX for some tp G M, then tp e Qn,m-iH-

Assume that (I)nm and (II)nm hold for all n, m G N. Then

(b) Doc '•= flnmgN $nm 15 a core for both A and B. There is a (unique) self-

adjoint » -representation it of'21 on Doo such that tt(xi) = A \ D<x> and ir(x2) = B \

(c) For arbitrary r, s G N, ArBs \ A» = ArBs \ Drs.

Indeed, (b) follows immediately by combining the results in [8, §1], with Propo-

sition 3.3 in [9]. Though (c) is not explicitly stated in [8], it follows by arguing as

in the proof of Proposition 1.5 in [8]. Let || • ||ra denote the norm on Drg defined by

|| • ||rs :— ||ßsAr • ||. Then the argument of the proof of Proposition 1.5 shows that

(I)nm and (II)nm for all n, m G N imply that (A»! )) ■ \\rs) is dense in (Drs, || ■ ||rs)-

But this is (c).

PROOF OF PROPOSITION ll. We now specialize the operators A and B from

above. Let 5 be the unilateral shift on the Hardy space M := )/2(T), i.e., (S<p)(z) =

z<p(z) for tpeM. Let A := Re S, Y := Im S, A := A"1 and B := Y~l. It is then

straightforward to check that QnmM = Lin{z°, z,..., zn+m~2} and that (I)nm and

(II)nm are fulfilled for arbitrary n, m G N. Let ir be the corresponding selfadjoint

»-representation of 21 on D which exists by (b). Define T := S*2AB \ Doo-

First we prove that T G 7r(&)£,. Obviously, T G £,r(a)(A», #)• To prove that

T e 7r(2l)£,, it suffices to show that for I = 1,2 and tp, tp e A»

(9) (Tv(xl)tp,ip) = {T<p,ir(xl)il>).

For suppose tp,tp G Doo- Since Doo Q D-n, there is tp e (I — Qii))i such that

tp = X2Yc. Further, tp = XÇ for some f G M. By (a), tp = XYXc = YX2q. Since

C ± z° and c A z, S*2Xç = XS*2c. Therefore,

(Tn(Xi)tp,tp) = (S*2ABAtp,tp) = (S*2ABAXYXc,Xi) = (XS*2ç,0

= (S*2Xc,Ç) = (S*2ABYX2c,0 = (S*2ABp>,AtP) = (T<p,ir(xi)tP).

A similar reasoning shows (9) in case / = 2.

The proof of Doo $ D(T*) will be indirect. Assume that D^ Ç D(T*). Then

R :=T* \ Doo is a closable operator on D. Because A»[**(»)] is a Fréchet space, the

closed graph theorem ensures that R maps Asolea)] continuously into U. Since

twa) is generated by the directed family of norms||Anß™ • ||, n G N, there is a

bounded operator Z on M and n G N such that R = ZAnBn \ Doo- Then we have

(10) (S*2ABtp, tP) = (<p, ZAnBntP)    for all p,tP e Doo-

From (c) it follows that (10) is valid for arbitrary tp e Du and tp e Dnn-   Since

Du = YX(I - Qn))i and Dnn = XnYn(I - Qnn)X, it therefore follows from (10)
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that

(S*2(I-Qu)ç,XnYn(I-Qnn)0 = (YX(I-Qu)ç,Z(I-Qnn)0    for all f,£ € M,

i.e., (I - Qn)iS2XnYn - XYZ)(I - Qnn) = 0. Consequently,

(11) S2XnYniI-Qnn)XCXY)<+QiiX.

For k, I = 1,..., n, Afc and Y"' commute on (/ - <3„„))/ by (a), hence so do Sk and

S*1. Thus (11) leads to

(12) S2iS + S*)ÍS - S*)ÍS2 - S*2)"-^/ - Qnn)H Q(S + S*)(S - S*)H + QnX.

Using that (S + S*)H fl QnX = {0} (which is true by (I)„), ker(5 + 5*) = {0}
and the identity

52(5 + S*)(S - S*) = ÍS + S*)(S - S*)(S2 + Qu) + iS + S*)QnS*,

it follows from (12) that

QnS*iS2 - S*2)"-1^ - Qnn)M C(S- S*)X = YU.

But QuS*(S2 - S*2)71-1^ - Qnn)z2n~l = í-l)n~lz i YH by (I)u which is the

desired contradiction. That is, we have proven that A» ^ DÎT*).

Finally we check that TrfSt)^ ̂  tt(21)£,. Since T G tt(21)£,, cr and so (cT)+ is

in 7r(2t)y-. If there would be a Ti G 7r(2l)£, such that (ct)+ = Crx, then obviously

Ti Ç T* and so A» Ç í*(T*) which is the contradiction. Consequently, 7r(2l)y- ̂

7r(a)S,.    D
REMARKS. 1. The operator T from the preceding proof is closable.

2. Let it be the selfadjoint »-representation of 21 as constructed in the above

proof. Since the shift operator 5 is irreducible and 7r(xi) = A, ir(x2) = B by (a),

it follows easily that the von Neumann algebra 7r(2l)' reduces to the scalars. Since

the »-algebra A is commutative, ic(xi) belongs to 7r(2t)s, but 7r(xi) = A is certainly

not affiliated with 7r(2l)'.
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