
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 102, Number 3, March 1988

LEFT ORE PRINCIPAL RIGHT IDEAL DOMAINS

RAYMOND A. BEAUREGARD

(Communicated by Donald Passman)

ABSTRACT. The rings referred to in the title of this paper have long been

conjectured to be principal left ideal domains. In a recent paper [6] Cohn and

Schofield have produced examples (of simple rings) showing that this is not

the case. As a result, interest in this type of ring has deepened (see [5], for

example, where these rings are referred to as right principal Bezout domains).

Our main purpose here is to prove that such rings are either principal left ideal

domains or left and right primitive rings.

All rings below have unity and have no proper zero-divisors. A principal right

ideal domain (PRI domain) is a ring in which each right ideal is a principal right

ideal. Such a ring is an example of a weak Bezout domain or 2-fir, i.e., a ring in

which the sum and intersection of any two principal right ideals is again principal

whenever the intersection is nonzero. In addition, a PRI domain is a right Ore

domain, i.e., a ring in which each nonzero principal right ideal is right large in the

sense that it has nonzero intersection with each nonzero right ideal. A right Ore 2-

fir is a right Bezout domain. The concept of a 2-fir is left-right symmetric; however

a right Bezout domain is left Bezout iff it is also left Ore. We refer to [4] for the

proof of these well-known results.

A nonzero nonunit in a ring R is an atom (also called prime or irreducible) if it

has no proper factors. An element which is either a unit or a product of atoms is

said to be finite dimensional or simply finite. A ring is said to be atomic if each

of its nonzero elements is finite. In a 2-fir this condition is equivalent to the ace

for principal right and also principal left ideals. In a PRI domain only the right

ace need hold, assuring that each nonzero nonunit has an atomic left factor. Also

recall that in a 2-fir, atomic factorizations are unique up to order of factors and

similarity.

The following proposition generalizes the well-known fact that an atomic left

Ore PRI domain is a PLI domain.

PROPOSITION 1. Let R be a 2-fir. If I is a left ideal of R containing a finite
element a which is left-large (i.e., Ra fl Rx ^ 0 for all 0 ^ x G R), then I is a

principal left ideal.

PROOF.   Let ai = a.   If Rai ^ 2 choose a2 G I\Rai.   Inductively, let 2„ =

Rai -I-h Ran; if 2 ^ In choose o„+1 in I\In- Since ax is large, each 2„ must be

a principal left ideal and since ai is finite the chain 2n must itself be finite. Thus

2 is a principal left ideal.
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A nonzero element a in a ring R is right (left) invariant if aR (Ra) is a two-sided

ideal; if both conditions hold, that is, if aR = Ra, then a is invariant.

PROPOSITION 2. In any ring R, if a is right invariant then every factor of a is

a left factor, if a is invariant then every proper factor of a is a proper left factor.

PROOF. Assume b is a factor of a, say a = rôs in R. The right invariance of a

gives rise to an endomorphism o of R given by ra = ar°'. Then a = bsr" follows

easily. If a is invariant, then o is an automorphism and so if r is a nonunit then so

is r°'.

PROPOSITION 3. In any ring R, if a = cb with c left invariant and a right

invariant, then b is right invariant.

PROOF. For any r G R, if cr = r'c and r'a = ar" then rb = br" so that Rb C bR.

Let R be a PRI domain. A nonzero element b in R is said to be right bounded if

bR contains a nonzero two-sided ideal; the largest such ideal is denoted b*R and b*

is the right bound of b. If R is a left Ore PRI domain, a similar statement holds for

left bounded elements and the left bound of b is denoted 6" if it exists. This follows

from [2, Theorem 2.2] and the fact that the family of principal left ideals of R is

closed under intersections. This last property for R is an immediate consequence of

the restricted dec for principal left ideals which is equivalent to the ace for principal

right ideals [2, p. 253].

From now on we assume that R is a left Ore PRI domain. Suppose b G R has

left bound 6". Then since Rb$ is a right ideal, R$ — xR for some x G R; from this

Rb$ = b^R follows easily. In addition, the left-right analog of Theorem 3.2 of [2]

applies and shows that if p is an atom which is left bounded then p" is also finite.

Thus the left bound of an atom is finite invariant. Using this fact we can prove the

following result.

PROPOSITION 4.   Let R be a left Ore PRI domain. If aR = Ra, then a is finite.

PROOF. Suppose the result is false and choose aR maximal in {xR | xR — Rx,

x not finite in R}. Let p be an atomic (left) factor of a. Then p is bounded by a

and so has left bound p" which is finite invariant by the remark above and divides

a. Proposition 3 and its left-right analog applied to an equation a = yp$ shows y

to be invariant. Thus aR Ç yR and y is not finite because p" is finite. We have a

contradiction to the way aR is chosen and the proof is complete.

Proposition 4 and the remarks preceding it give us the following.

COROLLARY 5. Let R be a left Ore PRI domain. If b G R has left bound 6"
then 6" is finite invariant.

A ring R is said to be left (right) bounded if each of its elements is left (right)

bounded.

COROLLARY 6 (CF.  [3]).   A left bounded PRI domain is a PLI domain.

PROOF. If R is left bounded, then R is clearly left Ore. Proposition 1, together

with Corollary 5, shows that each left ideal of R is principal.
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THEOREM 7. Let R be a left Ore PRI domain. If each atom of R is left bounded,

then R is left bounded.

PROOF. The set of all left bounded elements of R is multiplicatively closed [2,

Theorem 2.7]. Thus each finite element of R is left bounded. Conversely each left

bounded element of R is finite by Corollary 5. Suppose that R is not left bounded.

Then we may choose bR maximal such that b is infinite (b is an infinite prime of

[1]). We obtain a contradiction using an argument like that of [5, Proposition 6.1].

Let p be an atomic left factor of b and let p" be its (finite invariant) left bound.

The lcrm of b and p" may be written

m = bx — p"t/.

If bR +p^R = dR then b = dbi, p" = dpi and 6i ~ y, pi ~ x (the symbol ~ stands

for similarity). Note that p is a left factor of p" by Proposition 2. Thus x is finite

with length less than that of p" and y is infinite. The invariance of p* defines an

automorphism a of R given by rp^ = p^r". We may write ftp' = p^b" in the form mz

for some z G R. Comparing with the displayed equation we have ba = yz, p" = xz

and z is a finite nonunit while y is infinite. Writing 9 = o~x we have b = yeze,

contradicting the maximal way 62? is chosen.

THEOREM 8. Let R be a left Ore PRI domain. Either R is a PLI domain or

R is a left primitive ring.

PROOF. Suppose that R is not a PLI domain. Then R is not left bounded by

Corollary 6. Thus we may select an atom p in R such that Rp contains no nonzero

two-sided ideal. If M is any left ideal of R containing Rp, then Proposition 1 shows

that M must be a principal left ideal (containing the atom p) and so Rp is maximal

as left ideal. Thus R/Rp is a simple faithful left 22-module.

COROLLARY 9 (CF. [5]). If R is a left Ore PRI domain, then either R is a
PLI domain or the Jacobson radical of R is zero.

Since a local primitive ring is a (skew) field we obtain the following well-known

result as a corollary.

COROLLARY 10.   A local left-Ore PRI domain is a PLI domain.

We wish to establish Theorem 8 but with right primitive in place of left primitive.

To do this we shall use the following result whose proof is given in [5] (compare

with Corollary 5).

PROPOSITION 11 (CF. [5, PROPOSITION 6.2]). Let R be a left Ore PRI

domain. If p is an atom of R having right bound p*, then p* is finite invariant.

Using this result we can prove the following.

THEOREM 12. Let R be a left Ore PRI domain. Every nonzero two-sided ideal

of R is a principal left ideal generated by a finite invariant element.

PROOF. Note that any two-sided ideal 2 / 0 of R has the form 2 = aR and is

a principal left ideal iff a is finite by Propositions 1 and 4. Suppose the theorem

we wish to prove is false. Choose aR maximal in {xR \ Rx C xR and x is not

finite}. Let p be an atomic left factor of a and p* its invariant right bound so that
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aR Ç p*R. We write a — p*b for some infinite b in R. Applying Proposition 3 we

see that b is right invariant. Since p* is invariant we have a = cp* and c (like b) is

also right invariant and infinite. Thus aR G cR contradicting the choice of a.

As a consequence of Theorem 12 we see that for b in R, the left bound 6" exists

iff the right bound b* exists, in which case b*R = Rb$. Thus we obtain the following

improvement of Corollary 6 answering a question raised in [3],

COROLLARY 13. Let R be a left Ore PRI domain. If R is either left or right
bounded, then R is a PLI domain.

In addition we have the following analog of Theorem 8.

THEOREM 14. Let R be a left Ore PRI domain. Either R is a PLI domain or
R is a right primitive ring.

PROOF. If R is not a PLI domain then R is not left bounded. Thus we have an

atom p in R which is not left bounded and hence not right bounded. Then R/pR

is a simple faithful right 22-module.

If R is a primitive PRI domain, then R will be simple if all atoms of R are

similar. For, if M = aR is a maximal ideal of R and a ^ 0, then a is the right

bound of some atom p. But then aR = f] qR where the intersection is over all

atoms of R by [2, Theorem 2.2], that is M = aR is the Jacobson radical of R. Thus

M = 0.
The examples given in [6] of left Ore PRI domains that are not PLI domains are

simple rings. For examples of primitive PLI-PRI domains that are not simple we

mention the skew polynomial ring F[x, a], where a is an automorphism of the field

F of infinite order (cf. [7, p. 22]). To see what can happen in a PRI domain that

is not left Ore see Example 3.9 of [2].

ADDENDUM. This paper was written before the appearance of [5] in revised

form. Hence Proposition 4 follows from [5, Proposition 6.3] and Theorem 12 is

essentially [5, Theorem 6.4].
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