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ABSTRACT. Let D: C"[0,1] — M be a derivation from the Banach algebra of
n times continuously differentiable functions on [0, 1] into a Banach C™[0, 1]
module M. If D is continuous then it is completely determined by D(z) where
z(t) =t, 0 <t < 1. For the case when D is discontinuous we show that D(f)
is determined by D(z) for all f in an ideal T (D)? of C™[0, 1] where its closure
T (D)2 is of finite codimension.

0. Introduction. In 1978 Bade and Curtis [2] constructed a derivation from
C*[0,1] into L,(0,1) which is discontinuous on every dense subalgebra. The strick-
ingly high degree of discontinuity of the derivation in that example challenged the
investigation on the existence and the characterization of derivations of C™[0,1]
with similar properties. In this paper we present a key theorem on discontinuous
derivations of C™[0, 1] which is a stepping stone in the quest of determining the
structure of all discontinuous derivations of C™[0, 1].

1. Preliminaries. Let C™[0,1] denote the algebra of all complex valued func-
tions on [0, 1] which have n continuous derivatives. It is well known that C™(0, 1]
is a Banach algebra under the norm

_ = | f*) ()]
£l = fé}g,’i],; a

whose structure space is [0,1]. We will need a characterization of the squares of
the closed primary ideals with finite codimension in C™[0, 1]. We use the notation

My (to) = {f € C™(0, 1]If V) (t0) =0; 7 =0,1,...,k}.

These are precisely the closed ideals of finite codimension contained in the maximal
ideal My, o(to) of functions vanishing at to. Writing M,, x for My, x(0) and setting
2(t) =t,0 <t <1, we have

1.1 THEOREM. Letn be a positive integer. Then

(i) M2y = 2Mpo = {fI£(0) = £'(0) = 0 and £+ (0) eaists},

(i) M2, =2""'Mp, 1< k<n-1,

(iii) M2, = 2" My .

Part (i) is from [1, Example 3]. Part (ii) is due to Dales and McClure (3, Theorem
3.1]. The proof of part (iii) can be found in [2].
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The squares of the closed primary ideals M, x(to) at other points to in [0, 1] are
given by exactly similar formulas, where 2 is replaced by 2z — t;.

A Banach C"[0,1]-module is a Banach space M together with a continuous ho-
momorphism p: C*[0,1] — B(M). A derivation, or a module derivation of C™[0, 1]
into M is a linear map D: C™[0,1] — M which satisfies the identity

D(fg) = p(f)D(9) + p(9)D(f)-

We shall be interested in the form taken by discontinuous derivations. To measure
the discontinuity of a derivation D, one introduces separating space S(D). This is
the subspace of M defined by

S(D) = {m e M|3{fx} € C"[0,1], fx = 0 and D(fx)=> m}.

It is easily checked that $(D) is a closed submodule of M, and the derivation D
is continuous if and only if S(D) = (0). The continuity ideal for a derivation
D:C™0,1] > M is

T(D) ={f € C*0,1]|p(f)S(D) = (0)}.
T (D) is a closed ideal in C™[0,1]. It is proved in [1, Theorem 3.2] that
T(D) = {f € C™(0,1]| Dy is continuous},

where Dy(-) = p(f)D(").

The hull F of T(D) is called the singularity set for D. If D is a derivation
from C™(0, 1] with singularity set F, then F is finite and T (D) 2 ,cp Mn,n-1(t).
Moreover we can decompose D into a finite sum of derivations whose singularity
sets consist of exactly one point {2, Theorems 1.2 and 3.2]. Throughout this paper
we shall assume that a discontinuous derivation has the point zero for its singularity
set.

If D: C™[0,1] — M is a derivation, we have

D(p(2)) = p(p'(2))D(2), pEP,

where P is the dense subalgebra of polynomials in z. If D is continuous, it is
completely determined by this formula. Thus a continuous derivation D is uniquely
determined by the vector D(z). We shall see that if D is a discontinuous derivation,
it is still determined by D(z) on the square of the continuity ideal. But first, we
need to define the notion of the differential subspace of a Banach C™[0, 1]-module,
a concept first introduced by Kantorovitz who named it “semisimplicity manifold”
[4, 5]. Let M be a Banach C™|0, 1]-module. The differential subspace is the set W
of all vectors m such that the map p — p(p’)m is continuous on P. We quote the
following results from [2].

1.2 THEOREM. Let M be a C™(0,1]-module. A vector m lies in the differential
subspace W if and only if the map p — p(p)m is continuous for the C™[0, 1]-norm
on P. Form e W, define

lllmlll = sup {llo(p)ml| | llplln-1 =1}.

then
(1) Im| < [[lm]ll, m € W,
(2) W is a Banach space under the norm ||| - |||,
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(3) W is a C™~1|0, 1]-module. There exists a unique continuous homomorphism
v: C*710,1] = W such that

v(p)m = p(p)m, meW, peP.

Since D(f) = ~(f')D(z) for every continuous derivation D: C™[0,1] — M [2,
Theorem 4.5], a computation of v, given M and p: C*[0,1] — B(M), will give us
an explicit structure of continuous derivations of C™(0, 1] into M.

A nontrivial derivation D: C™*[0,1] — M is called singular if D vanishes on P
(equivalently D(z) = 0). A singular derivation is necessarily discontinuous. A
derivation D is decomposable if D can be expressed in the form D = E + F, where
E is continuous and F is singular. Such a splitting is unique. It was shown in [2]
that a derivation D: C™[0,1] — M is decomposable if and only if D(z) € W. If D
is decomposable and D = E + F, then its singular part F vanishes also on T (D)?2.

An indecomposable derivation is a derivation which is not decomposable. As an
application we shall determine the structure of all derivations from C![0,1] into
L,(0,1), 1 < p < 0o, where the module action is defined by

(p(N)z)(t) = f(t)=(¢) / f'(s)z(s)ds,  feC0,1], z € L,(0,1).

2. Discontinuous derivations of C"[0, 1]. In this section we present a struc-
ture theorem for continuous and discontinuous derivations of C™[0, 1] into an arbi-
trary C™[0, 1]-module. But first we need the following lemma.

2.1 LEMMA. Fizn > 1, and equip My, n,_1 with the C™(0,1]-norm. The map
f = f/z from My, n_1 to C"~1[0,1] is continuous.

PROOF. We show that ||(271 f)(®~1)||o, < n!2"!||f|l». By the Leibnitz formula

n—1

T HeD =3 ("; 1) (= 1)0) pn=1-3)

7=0

n—1 1
(n R )(—l)j]'!z‘j_lf("‘l‘j).
0 J

"%

J

Thus
n—1

(Z“f)("“’(t)=2(";l) 1)13'”“// /f(") s)dsdr; - dry,
Jj=0

so that

n—1
e X (") igh e e
=0

nol,
=il 3 ("5 1).
i=o \ 7
Thus ||z72 f|ln=1 < K||f||» for some K > 0.
2.2 REMARK. Themap f — f/z is a continuous map from My, 1 to My_1 n—2
for n = 2,3,.... The fact that f/2 € Mp_1n_2 for f € M, ,_, follows from
L’Hopital’s rule.
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The following theorem shows that a discontinuous derivation is completely de-

termined by D(z) on the square of the continuity ideal.

2.3 THEOREM. Let M be a Banach C™(0,1]-module with differential subspace
W. Let D be a derivation of C™[0,1] into M.

(1) If D is continuous then D(f) = ~(f")D(z), f € C™(0,1].

(2) If D is discontinuous with continuity ideal T (D) = Mp—1 for some k,
1<k<n, then

Do) =~ (&) WeHDE)  oe TP,

The proof of (1) was given by Bade and Curtis in [2, Theorem 4.5].

PROOF OF (2). Let g € T(D)%. Since M2, ; = 2¥Myx_; we can write
g = zFf, where f € My, k1. Then D(g) = p(2*)D(f)+p(f)D(2*). But z¥ € T (D)
so that p(2¥)D(-) is continuous. By (1) we have

p(2*)D(f) = ~(f")[p(z*)D(2)].
Consider the Taylor expansion f = Y_7_, &;(f)2’ + Rnf, where &;(f) = f9)(0)/5!

and R,f € My ,. Since zM, »_ is dense in My ,, there exists {fm} C Mpn_1
such that zf,, = R,f in C™[0,1]. By 2.1, f, = Ry, f/z in C*71[0,1] so that

z

n
It 5N =L merp),
=k
We have
n

k

MﬁD@ﬂ=J§;p( 6An£+am)0uﬂ

J

= AP (i 8(N27 71 + fm) p(2)D(z*)
i=k

= lim p (Z (21 + fm) [kp(2*)D(2)]-
j=k

Since p(z¥)D() is continuous, p(2*¥)D(z) € W. By 1.2 we can replace p by 7 so
that

p(ND(F) = lim ~ (Z 5(1)2 1 + fm) [ko(z*)D(2)]

=k
=,,(

o

NE

8(f)2~! + lim fm) [kp(2*)D(2)]
k

) lko(z4)D(2)].

(S
]

N~
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D(9) = o)D) + p()D(=*)
=~ DE] + 7 (L) (oD (e

=r(fiiﬁti)m%wun

2k
- g k
=1(%) "D
Immediately following Remark 2.2 we have

2.4 COROLLARY. Let D be a derivation of C™[0,1] into M. If D is discon-
tinuous with continuity ideal T (D) = Mp -1 for some k, 1 < k < n, then D 1is
continuous on T (D)2 = z"Mn,k_l for the C™t*_norm.

The following result in [2] is a direct consequence of Theorem 2.3.

2.5 COROLLARY. If D is a singular derivation of C™[0,1] then D vanishes also
on T(D)2.

2.6 COROLLARY. Let D be a singular derivation of C™[0,1] with continuity
tdeal T (D) C My, —1 for some k, 1 < k < n. Then the range of D is contained in
the kernel of p(2*).

PROOF. Let f € C"[0,1]. We write f = Y520 6:(f)2* + Rf, where Rf €
My k—1. Then

p(z*)D(f) = p(*)D(RS) = p(*) D(RS) + p(Rf)D(*) = D(*Rf) = 0.

3. Application. We determine the structure of all derivations of C*[0, 1] into
L,(0,1), 1 < p < 0o, where the module multiplication is defined by

() (p(N)2)(®) = F(B)=(2) —/0 f'(s)z(s)ds,  feC0,1], z € Ly(0,1).

We need the characterization of the differential subspace for this module given by
Bade and Curtis [2]. In the following if z is a function of bounded variation, we
write z(ds) and v(z)(ds) for the measure corresponding to z and its total variation.

3.1 THEOREM. Let L,y(0,1),1 < p < 0o, be given the C*[0, 1]-module operation
defined by (*). An element z € L,(0,1) belongs to the differential subspace W if
and only if

(1) z s of bounded variation on each interval [0,t],0 <t < 1, and

2) fy v(@)([0,t])? dt < oo.

Let z be in W; we can suppose z is right continuous. By Theorem 1.2, for any
polynomial p we have

()0 = (P(p)=)(0) = p(0)2(t) — | #'(s)als)ds.
An integration by parts yields

hwnm=mmw+ﬁpmuwx
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so that
((H2)(t) = 1(0)z(0) ./f o(ds),  [eCl.], ze W

Thus all continuous derivations D: C[0,1] — L, (0, 1) are of the form

D()(t) = (1(f)D)(t) = £'(0)D(2)(0) + /f% 2)(ds).

Now let D: C'[0,1] — L,(0,1) be a singular derivation with continuity ideal
T (D) = My, by Corolllary 2.6 D(C![0,1]) C ker p(z) which is one dimensional.
Thus D is a point derivation.

We now turn to the structure of an arbitrary discontinuous derivation D of
C10,1] into Ly(0,1). We show D is the sum of a continuous linear map, a singular
derivation and a discontinuous linear functional on C1[0, 1). We need the following
lemma.

3.2 LEMMA. Let D: C*[0,1] — L,(0,1) be a discontinuous derivation with
singularity set F = {0}. We can write D = Dy + Dy where D, is a discontinuous
derivation and Dy(2) ts of bounded variation on [a,1] for all0 < a < 1.

PROOF. Since p(2)D(*) is a continuous derivation,

(p(2)D(f))(t) = tD( /D s)ds isin W,

It follows from Theorem 3.1 that D(f) is a function of bounded variation on [a, ¢],
0<a<c<l,forall finC[0,1].

Fix b in (0,1) and let y = kpp,1)D(2) where kj ;) denotes the characteristic
function on [b, 1]. Then y is of bounded variation on [0,¢] for all 0 < ¢ < 1. Now

tD(2)(¢) = (p(2)D(2))(?) / D(z)(s)(ds) e W

so that v(kp,1)2D(2))([0,t]) € Ly(0,1). Since 1/t is boudned on [b, 1] it follows that
v(kps,1)D(2))([0,1]) is also in Ly(0,1). Thus y € W. By [2, Proposition 4.2] there
exists a continuous derivation D;: C[0,1] — L,(0,1) such that D;(z) = y. Then
D; = D — D, is a discontinuous derivation with D3(2) = kjo,;)D(2) a function of
bounded variation on [a,1] for all 0 < a < 1.

We are now in a position to describe discontinuous derivations from C![0, 1] into
L1(0,1).

3.3 THEOREM. Let D: C'[0,1] — L(0,1) be a discontinuous derivation with
singularity set F = {0}. By Lemma 3.2 we may assume that D(z) is of bounded
variation on [0,1] for 0 < a < 1. We can write

D(f)=T(H)+S(H) +e(f), feC'o1],

where T is a continuous linear map from C[0,1] into L1(0,1) which is completely
determined by D(z), S is a singular derivation and a is a discontinuous linear
functional on C*[0,1].

PROOF. Let u = p(z)D ( ); then 4 € W. We may assume that u is right
continuous so that u(0) = 0, moreover p is of bounded variation on [0,1] since
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D(z) is bounded variation on [a,1]. For f in T(D)? = M, we have

o= (v(£)u) 0= [ Hlu
[ - [ )

Themap T: f — — ftl (f'(s)/s)u (ds) defines a continuous linear map from C*0, 1]
into L1(0,1) which is bounded by || f||v(u)([0,1]). The first integral defines a dis-
continuous linear functional defined on M7, which can be extended to all of C*[0, 1]
via the Hahn Banach theorem. Let o be an extension of the first integral to C1[0, 1]
with @(1) = 0 and a(z) = ¢, any constant c¢. Define D: C*[0,1] — L,(0,1)
by D(f) = a(f) — fol (f'(s)/S)u(ds). Since the constant function is the eigen-
function at zero for p(f), f € My, D is a derivation. Since D(22) = D(z?),
D(z) — D(z) € ker p(z), thus we can choose ¢ so that D(z) = D(z). Then D —D is
a singular derivation S, and we have D(f) = T(f) + S(f) + a(f) as claimed.

4.3 THEOREM. Let D: C'[0,1] — L,y(0,1), 1 < p < oo, be a discontinuous
derivation with singularity set F = {0}. We may assume that D(z) is of bounded
variation on [a,1] for 0 < a < 1. We can write

D(f)=T()+S(N)+alf), feC'o1],
where T: C[0,1] — Ly(0,1) is a continuous linear map which is completely deter-
mined by D(z), S i3 a singular derivation and o is a discontinuous linear functional
on C1[0,1].
PROOF. Since L,(0,1) C L;(0,1) for p > 1, we can consider D as a derivation
from C*[0,1] into L;(0,1). By Theorem 3.3 we can write

D(f)=T(f)+S(f) +a(f), feCo,1],

so
T(f)=D(f)-S(f)—alf), feC'o,1].

Since all the terms on the left-hand side are in L,(0,1), T(f) € L,(0,1) for all

f € C0,1]. Let y € L,y(0,1) be in the separating space S(T) of T. There exists

fm = 0in C[0,1] and T(fm) = y in L,(0,1). By Theorem 3.3 T is a continuous

linear map from C![0, 1] into L;(0,1) so that T(fn,) => 0in L;(0,1). Thus y =0

and we conclude that T is continuous. This completes the proof.
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