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ABSTRACT. Let D: Cn[0,1] —► M be a derivation from the Banach algebra of

n times continuously differentiable functions on [0,1] into a Banach C"[0, lj-

module M. If D is continuous then it is completely determined by D(z) where

z{t) = t, 0 < t < 1. For the case when D is discontinuous we show that D{¡)

is determined by D(z) for all / in an ideal T{D)2 of C"[0,1] where its closure

T[D)2 is of finite codimension.

0. Introduction. In 1978 Bade and Curtis [2] constructed a derivation from

C^O, 1] into Lp(0,1) which is discontinuous on every dense subalgebra. The strick-

ingly high degree of discontinuity of the derivation in that example challenged the

investigation on the existence and the characterization of derivations of Cn [0,1]

with similar properties. In this paper we present a key theorem on discontinuous

derivations of C" [0,1] which is a stepping stone in the quest of determining the

structure of all discontinuous derivations of C"[0,1].

1. Preliminaries. Let Cn[0,1] denote the algebra of all complex valued func-

tions on [0,1] which have n continuous derivatives. It is well known that C"[0,1]

is a Banach algebra under the norm

1 fc=0

whose structure space is [0,1]. We will need a characterization of the squares of

the closed primary ideals with finite codimension in Cn[0,1]. We use the notation

M„,fc(f0) = {/ € Cn[0, l}\fU)(t0) = 0; j = 0,1,..., fc>.

These are precisely the closed ideals of finite codimension contained in the maximal

ideal Mnto(to) of functions vanishing at tr,. Writing Mn%k for Mn^(0) and setting

z(t) = i, 0 < t < 1, we have

1.1 THEOREM.   Let n be a positive integer.  Then

(i) M¿0 = zMn%0 = {/|/(0) = /'(0) = 0 and /<"+1)(0) exists},

(ii)M^k = zk+lMntk,l<k<n-l,

(iii)Mln = znMn<n.

Part (i) is from [1, Example 3]. Part (ii) is due to Dales and McClure [3, Theorem

3.1]. The proof of part (iii) can be found in [2].
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The squares of the closed primary ideals Mn^(to) at other points io in [0,1] are

given by exactly similar formulas, where z is replaced by z — tr,.

A Banach C"[0, l]-module is a Banach space M together with a continuous ho-

momorphism p: C"[0,1] —► B(M). A derivation, or a module derivation of Cn[0,1]

into M is a linear map D: Cn[0,1] —♦ M which satisfies the identity

D(fg) = p(f)D(g) + p(g)D(f).

We shall be interested in the form taken by discontinuous derivations. To measure

the discontinuity of a derivation D, one introduces separating space S(D). This is

the subspace of M defined by

S(D) = {m E M\3{fk} Ç Cn[0,1], fk => 0 and D(fk) => m}.

It is easily checked that S(D) is a closed submodule of M, and the derivation D

is continuous if and only if S(D) = (0). The continuity ideal for a derivation

D: Cn[0,l] -» M is

T(D) = {f ECn\0,l}\p(f)S(D) = (0)}.

T(D) is a closed ideal in Cn[0,1]. It is proved in [1, Theorem 3.2] that

T(D) = {■/ E Cn[0, l]\Df is continuous},

where £>,(■) = p(f)D(-).
The hull F of T(D) is called the singularity set for D. If D is a derivation

from C"[0,1] with singularity set F, then F is finite and 7(2?) D f]teF M„in_i(i).

Moreover we can decompose D into a finite sum of derivations whose singularity

sets consist of exactly one point [2, Theorems 1.2 and 3.2], Throughout this paper

we shall assume that a discontinuous derivation has the point zero for its singularity

set.

If D: Cn[0,1] —► M is a derivation, we have

D(p(z)) = p(p'(z))D(z),        pEP,

where P is the dense subalgebra of polynomials in z. If D is continuous, it is

completely determined by this formula. Thus a continuous derivation D is uniquely

determined by the vector D(z). We shall see that if D is a discontinuous derivation,

it is still determined by D(z) on the square of the continuity ideal. But first, we

need to define the notion of the differential subspace of a Banach Cn[0, l]-module,

a concept first introduced by Kantorovitz who named it "semisimplicity manifold"

[4, 5]. Let M be a Banach Cn\0, l]-module. The differential subspace is the set W

of all vectors m such that the map p —* p(p')m is continuous on P. We quote the

following results from [2].

1.2 THEOREM. Let M be a Cn[0, l]-module. A vector m lies in the differential

subspace W if and only if the map p —> p(p)m is continuous for the C"[0, l]-norm

on P. For m E W, define

IIMII =sup{||p(p)m|| |  ||p||„_i = l}.

then

(1) IHI < UHU, mEW,
(2) W is a Banach space under the norm \\\ ■ \\\,
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(3) W is a Cn~1[0, l)-module. There exists a unique continuous homomorphism

7: Cn~l[0,l] ^W such that

"l(p)m — p(p)m,        m E W, pE P.

Since D(f) = ^¡(f')D(z) for every continuous derivation D: Cn[0,1] —► M [2,

Theorem 4.5], a computation of 7, given M and p: Cn\0,1} —* B(M), will give us

an explicit structure of continuous derivations of C™[0,1] into M.

A nontrivial derivation D : Cn [0,1] —» M is called singular if D vanishes on P

(equivalently D(z) = 0). A singular derivation is necessarily discontinuous. A

derivation D is decomposable if D can be expressed in the form D — E + F, where

E is continuous and F is singular. Such a splitting is unique. It was shown in [2]

that a derivation D: Cn[0,1] —> M is decomposable if and only if D(z) eW. If D

is decomposable and D = E + F, then its singular part F vanishes also on T(D)2.

An indecomposable derivation is a derivation which is not decomposable. As an

application we shall determine the structure of all derivations from C^O, 1] into

2/p(0,1), 1 < p < 00, where the module action is defined by

(p(f)x)(t) = f(t)x(t) - [ f'(s)x(s) da,        / E C1 [0,1], x E Lp(0,1).
Jo

2. Discontinuous derivations of C"[0,1]. In this section we present a struc-

ture theorem for continuous and discontinuous derivations of Cn[0,1] into an arbi-

trary Cn[0, l]-module. But first we need the following lemma.

2.1 LEMMA. Fix n > 1, and equip Mn,n-i with the Cn[0,l]-norm. The map

f —► f/z from Mn>n_i to Cn-1[0,1] is continuous.

PROOF. We show that ||(2_1/)("_1)l|oo < n!2n-1||/||„. By the Leibnitz formula

j=0 v   ^    /

= E(n71)(-1)i^-í-1/(n-1-í).

j=0  ^    3     '

Thus

(•-■/)«-"(«) - g (" J ') (-iW^r £ [ ■ ■ /„" /'"»M **.- ' *i.

so that

\(M-lrt*-l>(t)\ < E i" " 1)i!¿r("!|l/lln)^J+1

i=o v   ^    '

Thus ||2-1/l|n-i < 2f||/||n for some K > 0.

2.2 REMARK. The map / —► f/z is a continuous map from A2„>n_i to M„_ijrl_2

for n — 2,3,-   The fact that f/z E Mn_i,„_2 for / E M„ra_i follows from

L'Hôpital's rule.
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The following theorem shows that a discontinuous derivation is completely de-

termined by D(z) on the square of the continuity ideal.

2.3 THEOREM. Let M be a Banach Cn[0, l]-module with differential subspace

W. Let D be a derivation of Cn [0,1] into M.

(1) If D is continuous then D(f) = >y(f')D(z), f E Cn[0,1].

(2) If D is discontinuous with continuity ideal T(D) = Mn^-i for some k,

1 < k < n, then

D(g) = 1[^yP(zk)D(z)),        9ET(Df.

The proof of (1) was given by Bade and Curtis in [2, Theorem 4.5].

PROOF OF (2). Let g E T(D)2. Since M%k_1 = zkMn^-i we can write

g = zkf, where / E Mn,k~i. Then D(g) = p(zk)D(f) + p(f)D(zk). But zk E T(D)

so that p(zk)D(-) is continuous. By (1) we have

p(zk)D(f) = 1(f')\p(zk)D(z)}.

Consider the Taylor expansion / = £?_.* ¿j(Z)^ + Rnf, where 6j(f) — /^'(0)/jl

and Rnf E Mn,n. Since 2M„in_i is dense in Mn¡n, there exists {/m} C Mn<n-i

such that zfm =*■ Rnf in Cn[0,1]. By 2.1, fm =¡> Rnf/z in C"-1^, 1] so that

fm + it^f)^1^-    m G""1 [0,1].
j=k z

We have

p(f)D(zk) =   lim  p ( ¿ «,-(/)«* + zfm    D(zk)

=   lim  p[ ¿ 63(f)z^ + fm    p(z)D(zk)

=   lim  p [ f>(/V_1 +/m    [*,(**)£>(*)]■
V-* J

Since p(zk)D(-) is continuous, p(zk)D(z) E W. By 1.2 we can replace p by 7 so

that

p(f)D(zk)=   lim  7(¿W)^-1+/m][MAD(2)]
m^°°      \j^k J

= 1 f E^(/)^-1 +  i™  /m    [M*fcM*)l

= 1 (0 M**)J>(*)].



STRUCTURE THEOREM FOR DISCONTINUOUS DERIVATIONS 511

Now
D(g) = p(zk)D(f) + p(f)D(zk)

= -r(f'Mzk)D(z)] + 7 (~pj [p(zk)D(z)}

= l(pj[p(zk)D(z)}.

Immediately following Remark 2.2 we have

2.4 COROLLARY. Let D be a derivation of Cn{0,1] into M. If D is discon-
tinuous with continuity ideal T(D) = Mn^-i for some k, 1 < k < n, then D is

continuous on T(D)2 = zkMn^-i for the Cn+k-norm.

The following result in [2] is a direct consequence of Theorem 2.3.

2.5 COROLLARY. If D is a singular derivation ofCn[0,1] then D vanishes also

on T(D)2.

2.6 COROLLARY. Let D be a singular derivation of Cn[0,1] with continuity

ideal T(D) Ç Mn^-i for some k, 1 < k < n. Then the range of D is contained in

the kernel of p(zk).

PROOF. Let / e Cn[0,1]. We write / = ¿2i=o 6i{f)zi + Rf> wnere Rf e
Mn,k-\- Then

p(zk)D(f) = p(zk)D(Rf) = p(zk)D(Rf) + p(Rf)D(zk) = D(zkRf) = 0.

3. Application. We determine the structure of all derivations of Cl[Q, 1] into

Lp(0,1), 1 < p < oo, where the module multiplication is defined by

(*)      (p(f)x)(t) = f(t)x(t) - f f'(s)x(s) ds,        f E C'lO, 1], x E MO, 1).
Jo

We need the characterization of the differential subspace for this module given by

Bade and Curtis [2].  In the following if x is a function of bounded variation, we

write x(ds) and v(x)(ds) for the measure corresponding to x and its total variation.

3.1 THEOREM. Let Lv (0,1), 1 <p<oo, be given the C1[0,l]-module operation

defined by (*). An element x E LP(Q, 1) belongs to the differential subspace W if

and only if

(1) x is of bounded variation on each interval [0, f], 0 < t < 1, and

(2)tiv(x)([0,t]rdt<œ.

Let x be in W; we can suppose x is right continuous. By Theorem 1.2, for any

polynomial p we have

(1(p)x)(t) = (p(p)x)(t) = p(t)x(t) - f p'(s)x(s)ds.
Jo

An integration by parts yields

(l(p)x)(t) =p(0)x(0)+ / p(s)x(ds),
Jo
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SO that

(7(/)x)(í) = /(0)x(0) + / f(s)x(ds),        f E C[0,1], x E W.
Jo

Thus all continuous derivations D: Cx[0,1] —* Lp(0,1) are of the form

D(f)(t) = W)D{z)){t) = f'(0)D(z)(0) + f f(s)D(z)(ds).
Jo

Now let D: Cx[0, 1] —► Lp(0,1) be a singular derivation with continuity ideal

T(D) = Mifi, by Corolllary 2.6 ^(C^O, 1]) Ç kerp(z) which is one dimensional.

Thus D is a point derivation.

We now turn to the structure of an arbitrary discontinuous derivation D of

C^O, 1] into Lp(0,1). We show D is the sum of a continuous linear map, a singular

derivation and a discontinuous linear functional on Cx[0,1]. We need the following

lemma.

3.2 LEMMA. Let D: C^O, 1] —» 2/p(0,1) be a discontinuous derivation with

singularity set F — {0}. We can write D = Di + D? where Di is a discontinuous

derivation and D%(z) is of bounded variation on [a, 1] for all 0 < a < 1.

PROOF. Since p(z)D(-) is a continuous derivation,

(p(z)D(f))(t) = tD(f)(t) - f D(f)(s) ds   is in W.
Jo

It follows from Theorem 3.1 that D(f) is a function of bounded variation on [a,c],

0 < a < c < 1, for all / in C1 [0,1].

Fix b in (0,1) and let y = k[b,i\D(z) where k[b,i] denotes the characteristic

function on [b, 1]. Then y is of bounded variation on [0, c] for all 0 < c < 1. Now

tD(z)(t) = (p(z)D(z))(t) + [ D(z)(s)(ds) E W
Jo

so that v(k[b,i]zD(z))([0, t]) E Lp(0,1). Since 1/t is boudned on [b, 1] it follows that

v(k[bA]D(z)j([0,t}) is also in LP(0,1). Thus y EW. By [2, Proposition 4.2] there

exists a continuous derivation 2)i : C^O, 1] —* Lp(0,1) such that Di(z) = y. Then

2?2 = D — Di is a discontinuous derivation with D^(z) = k[0¿]L>(z) a function of

bounded variation on [a, 1] for all 0 < a < 1.

We are now in a position to describe discontinuous derivations from C1 [0,1] into

M0,1).

3.3 THEOREM. Let D: Cx[0,1] —» Li(0,l) be a discontinuous derivation with

singularity set F = {0}. By Lemma 3.2 we may assume that D(z) is of bounded

variation on [0,1] for 0 < a < 1.  We can write

D(f) = T(f) + S(f) + a(f),        fEC1 [0,1],

where T is a continuous linear map from C [0,1] into Li(0,1) which is completely

determined by D(z), S is a singular derivation and a is a discontinuous linear

functional on C^JO, 1].

PROOF. Let p = p(z)D(z); then p E W. We may assume that p is right

continuous so that p(0) = 0, moreover p is of bounded variation on [0,1] since
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D(z) is bounded variation on [a, 1]. For / in T(D)2 = M20 we have

O(/)(0 = (-> (7) e) o = /o' û^c (*)

Jo      s Jt       s

The map T: / —» - /t (f'(s)/s)p (ds) defines a continuous linear map from C1 [0,1]

into Li(0,1) which is bounded by ||/||u(p)([0,1]). The first integral defines a dis-

continuous linear functional defined on M2 0 which can be extended to all of C1 [0,1]

via the Hahn Banach theorem. Let a be an extension of the first integral to C1 [0,1]

with q(1) = 0 and a(z) = c, any constant c. Define D: C1[0,1] —► Lp(0,1)

by D(f) = a(/) — L (f'(s)/S)u(ds). Since the constant function is the eigen-

function at zero for p(f), f E Miß, D is a derivation. Since D(z2) = D(z2),

D(z) — D(z) E kerp(z), thus we can choose c so that D(z) = D(z). Then D — D is

a singular derivation 5, and we have D(f) = T(f) + S(f) + a(f) as claimed.

4.3 THEOREM. Let D: C^O, 1] -» MO, l), 1 < P < 00, be a discontinuous
derivation with singularity set F = {0}. We may assume that D(z) is of bounded

variation on [a, 1] for 0 < a < 1.   We can write

D(f) = T(f) + S(f) + a(f),        /6CMM1,
where T: C1^, 1] —► Lp(0,1) is a continuous linear map which is completely deter-

mined by D(z), S is a singular derivation and a is a discontinuous linear functional

on C1 [0,1].

PROOF. Since Lp(0,1) Ç Li(0,1) for p > 1, we can consider Dasa derivation

from C^O, 1] into Li(0,1). By Theorem 3.3 we can write

D(f) = T(f) + S(f) + a(f), fEC1 [0,1],

so

T(f) = D(f)-S(f)-a(f), /GCMO,!].
Since all the terms on the left-hand side are in Lp(0,1), T(f) E Lp(0,1) for all

/ € C^fO, 1]. Let y E Lp(0,1) be in the separating space S(T) of T. There exists

fm => 0 in C^O, 1] and T(fm) => y in Lp(0,1). By Theorem 3.3 T is a continuous

linear map from C^O, 1] into M0,l) so that T(fm) => 0 in M0, x)- Thus V = °
and we conclude that T is continuous. This completes the proof.
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