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ABSTRACT. We prove a theorem for set valued mappings in an approxima-

tively compact, convex subset of a locally convex space, and then derive results

due to Ky Fan and S. Reich as corollaries.

Let E be a locally convex Hausdorff topological vector sapee, S a nonempty

subset of E and p a continuous seminorm on E. It is a well-known result (see the

proof in Sehgal [8] or Ky Fan [1]) that if S is compact and convex and f:S—>E

is a continuous map, then there exists an a; G S satisfying

(1) p(fx-x) =dp(fx,S) =min{p(fx,-y)\ yES}.

Since then a number of authors have provided either an extension of the above the-

orem to set valued mappings or have weakened the compactness condition therein.

Some of these results are

(a) REICH (1978). If S is approximatively compact and f: S —> E is continuous

with f(S) relatively compact, then (1) holds [5],

(b) LlN (1979). If S is a closed unit ball of a Banach space X and /: S —► X is

a continuous condensing map, then (1) holds when p is the norm on X [4].

(c) WATERS (1984). If S is a closed and convex subset of a uniformly convex

Banach space E and /: S —► 2E is a continuous multifunction with convex and

compact values and f(S) is relatively compact, then (1) holds [9].

(d) SEHGAL AND SINGH (1985). Let S Ç E with int(S) ^ 0 and cl(S) convex

and let /: S —► 2E be a continuous condensing multifunction with convex, com-

pact values and with a bounded range. Then for each w E int(S), there exists a

continuous seminorm p = p(w) satisfying (1) [6].

Our aim in this presentation is to prove (a) for multifonctions and derive some

results as easy corollaries.

For definitions and terminologies we refer to Reich [5] (see also [3]).

DEFINITION. A subset S of E is approximatively p-compact iff for each y E E

and a net {xa} in S satisfying p(xa —y)-+ dp(y, S) there is a subnet {xp} and an

x E S such that Xß —► x.

Clearly a compact set in E is approximatively compact. The converse, however,

may fail. For example, the closed unit ball of an infinite dimensional uniformly

convex Banach space is approximatively norm compact but not compact.
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Some consequences of the definition follow.

1. An approximatively p-compact set S in E is closed. Let y be a cluster

point of S and let a net {xa} Ç S satisfy p(xa — y) —*■ dp(y,S) = 0. Since S is

approximatively p-compact, {xa} contains a subnet Xß —> x E s. Since Xß —> y also

and E is Hausdorff, x = y E S.

2. If S is a closed and convex subset of a uniformly convex Banach space then

S is approximaltively norm compact.

Let y E E and, without loss of generality, assume a sequence {xn} Ç S satisfies

\\xn — y\\ —* d(y,S) = inî{\\y — ¡r||| x E S}. This implies that sup||x„|| < co.

Consequently, since S is closed and convex, there exist an x E S and a subsequence

{x„,} of the sequence {xn} such that xn, —* x weakly. Thus

(*) xni - y — x - y weakly.

It follows from (*) that

\\x - y\\ < lim \\xni - 2/11 = d(y, S),

i.e. d(y,S) = \\x - y\\.
Consequently, by the definition of the sequence {xn}

(**) ll*n4-0H->ll*-tfll-
Since E is uniformly convex, (*) and (**) imply that xni — y —► x — y. This yields

xn, —► x E S. Thus S is approximatively norm compact.

DEFINITION. Let E and F be topological vector spaces and let 2F denote the

family of nonempty subsets of F. The mapping T : E —► 2F is upper semicontinuous

(u.s.c.) iff T~l(B) = {x E E\ TxDB ¿ 0} is closed for each closed subset B of F.

3. If S is an approximatively p-compact subset of E then for each y E E,

Q(y) = {x E S\p(y — x) = dp(y,S)} is nonempty and the mapping defined by

y —* Q(y) is an upper semicontinuous (u.s.c.) multifunction on E. For a proof see

Reich [5].

Note that if E is a uniformly convex Banach space the above projection map Q

is single valued and continuous.

Now we give our main result.

THEOREM 1. Let S be an approximatively p-compact, convex subset of E and

let F: S —► 2E be a continuous multifunction with closed and convex values. If

FS = IJ{2r'2;| x E S} is relatively compact then there exists an x E S with

dp(x,Fx) =dp(Fx,S).

Further, if dp(x,Fx) > 0, then x E dS.

Note that dp(A, B) = inf{p(a; - y)\x E A, y E B}.

The proof of the above theorem uses the following lemma, whose proof is given

in Sehgal and Singh [7, Lemma 2, p. 92],

LEMMA. Under the hypotheses of Theorem 1, the mapping g: S —> R (reals)

defined by g(x) = dp(Fx,S) is continuous.

PROOF OF THEOREM l. Define a mapping G: S —► 2s by

G(x) = \J{Q(y)\ y E Fx, dp(Fx, S) = dp(y, S)}.

Note that since Fx is compact, G(x) ^ 0.
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Further, since Fx is convex, it follows that Gx is also convex. In fact, if u and

v are in Gx, then there exist elements t/i and y2 in Fx such that u is in Fyi and v

is in Fy2 and

P(yi -u)= dp(y, S) = dp(Fx, S) = dp(y2, S) = p(y2 - v).

Let t E [0,1], w(t) = tu + (1 - t)v and y3 = tyx + (1 - t)y2. Then w;(i) € S, t/3 is

in 2^x and

dP(yz, S) < p(î/3 - w(t)) < tp(yi - u) + (1 - t)p(y2 - v)

= dp(Fx,S)<dp(y3,S).

This implies that

dP(y3,S) = p(y3 - w(t)) = dp(Fx, S).

Consequently it follows that for any t E [0,1],

w(t) E Q(y3) n Gx;

that is, Gx is convex.

Also, since for each x E S,

Gx = QFx n{yE Fx\ dp(Fx, S) = dp(y, S)},

and Q is an u.s.c. function, it follows that Gx is a closed (in fact, compact) subset

of S.

We show that G is an u.s.c. multifunction. To prove this, we show that G~*(A)

is closed for any closed subset A of S. Let {xa} C G~1(A) be a net such that

xa —* xo E S. Since G(xa)ilA ^ 0, choose for each a, za E GxaC\A. It then follows

from the definition of G that for each a, there is a ya E Fxa, with dp(Fxa,S) —

dp(ya,S) and za E Q(ya)- Since cl(FS) is compact and {ya} C FS, without loss

of generality we may assume that ya —* j/n E E. Further, F being u.s.c, it follows

that j/o E Fxr,. Also, since Q is u.s.c, <2(cl(FS)) is compact and since for each a,

za € Q(ya) Q Q(Fxa) Ç Q(û(FS)), we may again assume za —* zn E Q(yo)- Now,

dp(ya,S) —» dp(yo,S) and by the lemma dp(Fxa,S) —► dp(Fxo,S). This implies

that dp(y0,S) = dp(Fx0,S) and that z0 E G(x0) D A, i.e., x0 E G~1(A). Thus G

is u.s.c. It now follows by a theorem of Himmelberg [2] that there is an x E S with

x E G(x). This implies that x E Q(y) for some y E Fx with dp(Fx, S) = dP(y, S).

Now, since dp(x,Fx) < p(x — y) = dp(y,S) = dp(Fx,S) < dp(x,Fx), we have

dp(x,Fx) = dp(Fx,S).

If dp(x, Fx) > 0 then FxC\S = 0. Choose a point y E Fx such that dp(x,Fx) =

p(x — y). If x is an interior point of S, then the convexity of S implies the existence

of a z E dS such that p(z—y) < dp(x, Fx). This implies that dp(Fx, S) < p(z—y) <

dp(x,Fx), which gives a contradiction. Consequently in this case x E dS.

Note that in view of consequence (2), the result due to Waters is a special case

of Theorem 1.

The following simple example is due to Waters [9] and shows that even in the

special case of the uniformly convex Banach space E, continuity therein cannot be

replaced by u.s.c. alone.

EXAMPLE. Let E = R2 with the Euclidean norm and let S = [0,1] x {0}.

Clearly S is convex and compact.
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v(   m     J(0'i:

Define F : S -> 2E by

(0,1)    ifa^O,

the line segment [(0,1), (1,0)]    if a = 0.

Then for any AC. E,

{4>  im n 1 = 0,
S   if (0,1)6 A,

(0,0)    if (0,1) ^yl, Af)L¿0.

Thus F is an u.s.c but not a l.s.c multifunction and FS is compact.

However, for any (a,0),

d((a,0),F(a,0)) > 1 = d(F(a,0),S)    if a / 0,

= ^^d(F(0,0),S)=0    ifa = 0.

Thus F does not satisfy the conclusion of Theorem 1.
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