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ABSTRACT. Let Ai and A<¿ be C*-algebras and B: A\ x A2 —► C be a

bounded bilinear form. It is proved that there exist a Hilbert space H, two

Jordan morphisms /¿,- : A, —» L(H), i = 1, 2, and two vectors £1, £2 ë H such

that

B(x,y) = (/ii(i)íi I A»2 (!/*)&)    for alii € Ai, y e A2.

The proof depends on the Grothendieck-Pisier-Haagerup inequality and Hal-

mos's unitary dilation theorem. An extemely elementary proof of the latter is

given.

1. Introduction. In [8, Remark 5.3(a)] it was observed that some arguments

in the proof of [8, Theorem 5.2] yield (essentially, cf. Remark 2.2) the following

representation theorem for bounded bilinear forms on the Cartesian product of two

C*-algebras.

1.1. LEMMA. Let Ai and A2 be two C*-algebras and B: Ai x A2 —► C be

a bounded bilinear form. Then there exist four Hilbert spaces K¡, K", i = 1,2,

cyclic *-representations 7r¿: A¿ —► L(K¡) with unit cyclic vectors £[ E K¡, cyclic

*-antirepresentations n" : A¿ —► L(K¡') with unit cyclic vectors £t" E K" and a

bounded linear map T: K[® K" —> K2 ® K2' with \\T\\ < [\B\\ such that for all
xEAi, y EA2

(1) B(x,y) = (r(1ri(x)í;>»l'(x)fí')|(ir'a(y')OX(y')tíí))AS©xí.

Here and elsewhere, for any Hilbert space H, (-\-)h or (-|-) denotes the inner

product and L(H) the space of bounded linear operators on H. If K is a closed

subspace of H, Pk is the orthogonal projection of H onto K.

The aim of this note is to point out that a representation in terms of Jordan

morphisms can be obtained even without the help of the operator T. In the for-

mulation of Theorem 2.1 the term "Jordan morphism" is only used for euphony;

Jordan morphisms are known to be precisely the direct sums of *-representations

and *-antirepresentations [12], and the proof actually yields such direct sums.

In the appendix we spell out for completeness the details of a proof of Lemma

1.1, since the proof is short and our point of view differs somewhat from that of [8],

We also find it worthwhile to communicate an utterly short and elementary proof

of the Halmos dilation theorem used in the proof of Theorem 2.1.
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2. The main result.

2.1. THEOREM. Let Ai and A2 be C*-algebras and B: Ax x A2 —► C 6e
a bounded bilinear form. There exist a Hilbert space H, two Jordan morphisms

Pi : Ai —► L(H), i = 1,2, and two vectors £i, £2 € 22 such that

B(x,y) = (pi(x)c¡i|p2(2/*)6)    for all x E Auy E A2.

PROOF. We use Lemma 1.1 and its notation, and write K = Ki © K2 where

Ki = K[ © K'l', i = 1,2. We modify a technique used in the proof of Theorem

2.4 in [4]. Define f: K -* K by the formula f(u,v) = (0,Tu). We may assume

that ||2?|| < 1, so that ||T|| < 1. Thus T has a unitary dilation, i.e., there is

a Hilbert space H containing K as a subspace such that T = PkU\K for some

unitary operator U: H —* H (see §3 for a proof and references). Write H in the

form H = Ki © 2Í2 © Kx, denote irt = tt^ © it'/: Ai —► L(Ki) for i = 1,2, and

define Pi(x)(çi,C2,ft) = (7ri(x)çi,0,0) for z E A,, çr € 2ÍX, ç2 e 2f2, ç3 G K±, and

^(y) = [2*(0©7r2(?/)©0)i7for yE A2. Moreover, denote £i = ((&,£"), 0,0) and

£2 = U*(0, (£2, £2)iO). A direct calculation using (1) in Lemma 1.1 now gives

(Aii(z)6M?/*)c;2)ff

= (tf (*,(*)(£,&').<),;0)[(o, *2iy*M,$),o))n

= ifiTiix)i&,çl%o)\io,MytM,t2)))K

= (T7T1(x)(cfi,ei')|T2(í/*)(Í2,Í2))K2 = B(x,y).      D

2.2. REMARK. Applying Theorem 2.1 to B: A2 x Ai -» C defined by B(y, x) =

B(x,y) we see that B can also be represented in the form B(x,y) = (pi(z)p2(t/)ca|¿;2),

where pi: Ai —> L(H) are Jordan morphisms for some Hilbert space 22, and £¿ E H

for i = 1,2. Similarly, the technique of the above proof shows that in [3, Theorem

2.1, condition (3)], one may take H = K and leave the operator T out. Theorem

2.1 of the present paper was announded at the UCLA Functional Analysis seminar

October 8, 1986; I am indebted to E. G. Effros for bringing a preprint of [3] in that

connection to my attention.

3. Appendix: alternate proofs of essentially known results. The unitary

dilation result in [7, Problem 177(a)] due to Halmos [6] is contained in part (b) of

the following proposition. Unlike [6, 7] or the proof of (a) in [2], the proof below

does not depend on the existence of the square root of a positive operator. The

proof of (a) may actually be seen as flowing from a comparison of [2] with a more

traditional approach (see e.g. [1, 9-11]) to the kind of problem treated there.

3.1. PROPOSITION. Let Hi and H2 be Hilbert spaces and T: Hi —> H2 a linear

contraction.

(a) There exist a Hilbert space 2i2 containing H2 as a subspace, and an isometric

linear map V : Hi —> 2i2 such that T = P#a V.

(b) There exist Hilbert spaces Ki and 2T2 and an isometric linear surjection

U: Ki —* K2 such that Ki contains Hi as a subspace, i = 1,2, andT = Ph2U\Hi.

PROOF. (a) Denote h(x, y) = (x\y) - (Tx[Ty) for x,y E Hi. Then h : Hi x22i -►

C is sesquilinear, and positive since ||T|| < 1. Denote N = {x E Hi\h(x,x) =

0}, and complete Hi/N with the inner product (x + N\y + N) = h(x,y) to a
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Hubert space K. Finally define K2 = K © H2, and Vx = (x + N,Tx) E K2

for x E Hi. Interpreting H2 as a subspace of 2f2, we have T = P/f2V', and

\\Vx[\2 = \\x + N\\2 + [\Tx[\2 = \\x[\2.

(b) Continuing from (a), denote Ki = Hi® (2i2 © V(22i)), and define U(x,y) =

Vx + yíorxEHi,yEK2®V(Hi).    D

PROOF OF LEMMA l.l. We may assume that ||22|| < 1. Denote B0(x,y) =

B(x,y*), so that 2?n is a bounded sesquilinear form with ||2?o|| < 1. Using Haager-

up's general version [5, Theorem 1.1] of Pisier's Grothendieck type inequality we

get four states <Pi,ipi'. Ai —► C, i — 1,2, such that

\B0(x,y)\ < [<p1{x*x) + M*x*)}1/2[<p2(y*v) + Mvv*)]1/2

for all x E Ai, y E A2. (In a similar estimate for B exchange the roles of

the last two states.) Denoting hi(u,v) — <pi(v*u) + tpi(uv*) and 2V¿ = {u E

Ai\hi(u, u) = 0}, we get two inner product spaces Ai/Ni with the inner prod-

ucts (u + Ni\v + Ni) = hi(u,v). Completing these to Hilbert spaces 2Í¿ we ob-

tain a well-defined bounded sesquilinear form 2?0: Ki x 2f2 —► C with ||2?o|| < 1

and Bq(x + Ni,y + N2) = Bo(x,y), x E Ai, y E A2. Thus there is a bounded

linear operator T: Ki —* 2C2 such that Bq(w,z) = (Tw\z), w E Ki, z E 2i2.

On the other hand, applying the GNS-construction [13, Theorem 9.14] to A¿ and

<Pi, and to the opposite C*-algebra (i.e., otherwise the same as A¿ but equipped

with the product u ■ v = vu where vu is the product of A¿) and tpi we see

that <Pi(u) = (7r¿(ti)£¿|£j') and tpi(u) = in"{u)£"[£") for a cyclic *-representation

{7r¿,2ít',^} and a cyclic *-antirepresentation {7r",2i", Ç"} of A¿. A straightfor-

ward calculation shows that (u + N\v + 2V,-) is the same as the inner product of

«(«)&<(«)£') and (<(*)&<•>)£') in K[ © K¡', which implies that we get

for each i = 1,2 a well-defined isometric linear map V¿ : 2Í¿ —► K¡ ® K" satisfying

Vi(u + Ni) = (7r¿(t¿)£¿, 7r"(u)Ç") for u E Ai. It is now easy to verify that the choice

T = V2TVÎ will work.     D
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