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ABSTRACT. We investigate how certain Darboux-like properties of real func-

tions (including connectivity, almost continuity, and peripheral continuity) are

related to each other within certain measurability classes (including the classes

of Lebesgue measureable, Borel, and Baire-1 functions).

I. Introduction. Consider the following topological properties that functions

/ from one topological space, X, to another, Y, may have:

Conn: / is a connectivity function if it is true that for every connected

subset G of X, f[C is a connected subset of X x Y,

D: /is Darboux if for every connected subset C of X, f[C] is a con-

nected subset of Y.

For functions / from the unit interval 2 = [0,1] into the reals R, f is Conn if and

only if it has a connected graph. It is obvious that Conn => D, but it was shown in

[12] that Conn <* D. On the other hand, Kuratowski and Sierpinski showed in [13]

that within the class Bi of functions /: 2 —► R of Baire's first class, Conn o D.

This result has been expanded a great deal. It is shown in Theorem 1.1, Chapter II,

of Bruckner's book [3] that within 22i, the following properties are also equivalent

toD:

PC: /: X —* Y is peripherally continuous if for each x E X and each

pair of open sets U Ç X and V Ç Y such that x E U and f(x) E

V, there exists an open subset W of U, containing x, such that

f\bd(W)] C V. Here, bd(W) denotes the boundary of W.

For real functions, this reduces to the condition of Young (see [3, (2), p. 9]).

SM: f:I—*R satisfies the condition of Sen and Massera if for each

xEl,

/(*)e lim  f(z),  lim  f(z) n lim f(z), lim f(z)

CC:       /: 2 —» R is CC if for each number a, the sets {/ < a} and {a < /}

have compact components,
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PR: / : 2 —► R is said to have a perfect road at each point if for every

x E I, there exists a perfect set P, having x as a bilateral limit

point such that f\P is continuous at x,

Zc: /: 2 —> 22 satisfies Zahorski's condition, Zc, if each set {/ < a}

and {/ > a} is bilaterally c-dense in itself,

Zw:        /: 2 —► R satisfies condition Zw, if each set {/ < a} and {/ > a}

is bilaterally dense in itself.

The usual conventions are adopted at the endpoints of 2 when some condition is

supposed to hold bilaterally, as well as conventions about cases where sets such as

{/ < a} or {/ > a} might be empty. Now, consider two more topological function

properties:

AC: / : X —» Y is said to be almost continuous (in the sense of Stallings

[18]) if for every open set G C X x Y containing /, there exists a

continuous g: X —» Y lying entirely in G.

EXT: /: X —► Y is said to be extendable provided there exists a con-

nectivity function 3: AT x 2 —► F such that f(x) = g(x,0) for each

xeX.

Stallings showed in [18] that for functions /: 2 —► R, AC => Conn, but that

for functions /: I2 —► R, Conn =► AC. From this it follows that for functions

f: I —* R, EXT => AC =>• Conn, and Stallings asked if the implications were

reversible. It was shown in [4, 11, and 17] that AC <* Conn, and it was recently

shown by Gibson and Roush [7] that EXT -st AC in the case of real functions. It

was shown in [1] that AC o Conn within the class Bi, and it will be shown below

that property EXT is also equivalent to all of these other topological properties

within this class.

It is the purpose of this paper to investigate how these ten topological properties

are related to each other within the following classes of functions:

F = the class of all functions from 2 into R.

L = the class of Lebesgue measurable functions in F.

B = the class of Borel measurable functions in F.

3i — the class of pointwise limits of sequences of functions in F which have only

discontinuities of the first kind.

Ri = the class of pointwise limits of sequences of functions in F which are

continuous from the right.

Bi = the class of pointwise limits of sequences of continuous functions in F.

It follows from the work of Reed [16] that

Bi =► R, => Jj => B => L => F

and that the implications are irreversible.

The theorems and examples given in §§II and III represent an expansion of

the results in an earlier paper [1], where the relationships between properties AC,

Conn, D, and PC within the classes Bi,Ri, and Ji were investigated. We do

not completely explain all the relationships in that we have as yet been unable to

determine whether EXT <= AC within the classes B, Jj, or Ri. As a major step in

showing EXT <= DBi, we establish a theorem about metric density which we hope

will have other applications.
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II. Theorems and examples.

THEOREM l.   Within F, only the following implications hold

AC => Conn => D => PC => Zoj = CC = SM

^PR =► Zc

and the diagram is the same within L.

PROOF. Proofs of most of the implications are straightforward and have ap-

peared elsewhere. That EXT => AC => Conn follows from Stalling's work [18].

The implication EXT => PR has recently been shown by Gibson and Roush [8].

To show that the diagram of implications does not change within L, we would

need to describe Lebesgue measurable examples where AC *> PR, AC <* Conn,

Conn <* D, D -s¿ PR, PC =«• Zc, and PC <* Zc. We will give only the first example

here. The other examples are discussed below, and are better than just Lebesgue

measurable.

The first example given by Gibson and Rousch in [6] shows that AC *> PR, but

that example is not Lebesgue measurable. Therefore, we modify that example as

follows. Let C be the ternary Cantor set, and Let C° = C — {endpoints of C}.

Construct / so that (1) f[I — C°] = {0} and (2) / intersects every closed subset

of C x 2 which has an uncountable x-projection. Then / is not PR because of the

points x E C° for which f(x) > 0. To see that / is AC, let G be an open subset

of 2 x 22 such that / Ç G. (C x I)\G is closed and its x-projection P must be

countable. Let P — {xi,X2,- ■ ■}■ For each i, put a box (a¿,ft¿) x (ci,di) around

(xi,f(xi)) whose closure is inside G such that a¿ and 6¿ are not in C. Some finite

subcollection {(a1,b1),(a2,b2),... ,(an,bn)} of {(ai,6i), (a2,£>2),... } covers P. For

each i, let (c*,gP) be the appropriate (cj,dj) that originally went with (a1, bl). We

will build a continuous function gi with domain [a\&*] and which lies in G. Then

a1 and bl are not in P and P is closed. Since (a\bl) n P is not empty, we let

ei = inf{(a',6') n P} and fl = sup{(a\6¿) n P}. If ei is not a left endpoint of C,

there is an x between a1 and el such that {x} x I lies in G. If e% is a left endpoint

of C, there will be an a; between e% and /' such that [el,x] x {0} and {x} x 2 lie

in G. In either case, it will be possible to construct a polygonal line graph which

is continued in G, extends horizontally from (al,0) to a point just to the left of

(x, 0), and then slants up with positive slope to a point inside (a1, bl) x (c\ dl) with

abscissa just greater than x. We then do a similar thing, moving from (bl, 0) to the

left. Connecting the two polygons within (al,bl) x (cl,dl) completes the definition

of gi-

Now, extend each gi to [0,1] so that gt(x) = 0 outside [a\b']. Then, g =

sup{<7i, ¡72, • • •, gn} is a continuous function with domain [0,1], lying in G.

THEOREM 2.   Within B, only the following implications hold:

EXT => AC => Conn => D => PR => PC => Zw = CC = SM

Zc
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with the possible exception EXT <= AC, none of the remaining implications is

reversible.  The same is true within the class Ji.

PROOF. The improvement in the diagram of implications is that we have D =>

PR in B. The proof that Conn => PR given on p. 10 of [3] really uses only that /

is Borel, rather than Bi (as is pointed out on p. U). A slight modification of that

proof yields the fact that DB => PR.

To show that the implications not involving property EXT do not improve in Ji

consider the following examples.

The characteristic function of the irrationals shows that Ji PC =*> Zc.

The characteristic function for C° shows that Ji PR =*> D, and if this function

is altered at one point of C° to have value 1/2, the resulting function shows that

JiZc *> PC.
Examples which show that JiD =*> Conn and that Ri Conn ■*> AC were given in

[I]-

THEOREM 3.    Within Ri, the following implications hold:

EXT => AC => Conn = D = PR = PC = Zc = Zw = CC = SM

and the second implication is irreversible.

PROOF. The only new implication, that Conn <= D in Ri, is proved in [1],

where the example to show Ri Conn *> AC is also given.

III. Metric density and the proof that DBi => EXT. As a primary tool

in showing that DBi => EXT, we prove a theorem about metric density in R™.

This theorem utilizes the notion of the Besicovich covering constant for dimension

n described in the following theorem. A„ denotes Lebesgue measure in R", and

B(x,6) denotes the ball with center x and radius 6. A function /: 22 —> 22 is

approximately continuous if for every x E R and every £ > 0, x is a point of density

oi{y:\f(x)-f(y)\<e}.

THEOREM B. For every dimension n there is a positive constant Kn with the

following property: For every positive function 6 defined on a bounded measurable

set A C R™, there is a finite collection of mutually disjoint balls {B(xi,8Xi): i =

1,2,..., m} for which

\nl\jB(Xl,6x,)nA\ >Xn(A)/Kn.

PROOF. Theorem B is contained in Theorem 2.8.14 of [5]. This is because the

Euclidean metric on Rn is "directionally £, r/, ç limited" on all of R" with £ = +oo,

n — 1/3, and c chosen suitably to work uniformly on all of R" (for n — 1, c — 2

and for n = 2, c = 6). Then our Kn = 2c + 1.

THEOREM 4. Let xq be a density point of the measurable set H Ç R", let £ > 0

be fixed, and let

= í . xn(B(xh)nH) >i_£for every 0<h<6\      {6>0)_
( Xn(B(x,h)) J
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Then

limit   UB(y)nDs)=1
(t,6)-.(o,o)      A„22(x0,i))

PROOF. Let 0 < n < 1 be given and let 60 > 0 be such that

Xn(BHH) r,

Xn(B) Kn2n£

for every ball B containing xq and diameter < ¿V Here Kn is the Besicovich

covering constant for dimension n. We now prove that if 0 < t and 8 < 6q/4 then

Xn(B(x0,t)nD6)

Xn(B(x0,t))      >i     '■

Suppose this is not true and let t, 8 E (0, 8q/4) be fixed with

Xn(B(x0, t)f)Ds)<(l- r,)Xn(B(x0, t)).

Let A = B(x0,t)\Dg. Then clearly Xn(A) > r¡Xn(B(x0,t)) and for each x E A

there is an hx E (0,8) with

Xn(B(x, hx) H 22) < (1 - £)Xn(B(x, hn)).

Hence by Theorem B, there is a disjoint family {22(x¿, hXi) : i — 1,2,..., m} such

that
m

K(U) > Xn(AnU) > Xn(A)/Kn    where U = [j B(Xi,hXi).
i=l

Obviously, then, Xn(U n 22) < (1 — £-)An(f7). First we verify that hXi < t for

every i = 1,2,..., m. Indeed, if hXi > t for some t then xq E B(xí, hXi) = B, and

diam(22) < 28 < 80. But then,

Xn(B n H) > (l - j^^j Xn(B) > (1 - £)Xn(B)

which contradicts the choice of hXi. Hence hXi < t for every i =1,2,...,m and as

a consequence, U Ç B(xo,2t). Then,

Xn(B(x0,2t) n 22) < A„(22 nU) + Xn(B(x0,2t)\U)

< (1 - £)Xn(U) + Xn(B(x0,20) - Xn(U)

= Xn(B(xQ, 2i)) - eXn(U) < Xn(B(xQ, 20) - -¿-Xn(A)

< Xn(B(xQ,2t)) - ^-Xn(B(x0,t))
tin

= Xn(B(x0,2t))(l-
Kn2"

Since t < 6q/4, this entails a contradiction.

COROLLARY.   Let xq be a density point of the measurable set H Ç R", let £ > 0

be fixed and let

f   ; Xn(B(xh)nH) >1_£for 0<h<S\        (6>0).
{ Xn(B(x,h)) J
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Then there is an rj > 0 such that

Xn(B(x0, t)r\Ds)> Xn(B(x0,0)/2    for every 0 < t, 6 < n.

THEOREM 5.   Let f: R —► R be bounded and approximately continuous and let

F(x,h) = ¡a^f^dt    ̂ °<
{ fix) ifh = 0.

Then, F is PC on R2. (Note that PC = Conn for functions f: R2 -+ R [9, 10].)

PROOF. The function F is continuous at each point (a;, h) with h ^ 0 so that it

suffices to show that F is peripherally continuous at (x0,0) for every xq E R. Let

£ > 0 be given. We show that there is a rectangle 22 = [a, b] x [c, d] such that xq — £ <

a<XQ<b<x0 + £ and -e < c < 0 < d < £ for which \F(x, h) - F(x0,0)| < e for

every point (x, h) on the boundary of R. Let 22 = {x: \f(x) - f(x0)\ < £¡2}; then

xq is a point of density of H and we define

Ds = {x: X((x-h,x + h)C\H) >2h(l-e/2) for 0 < h<8}.

Using the Corollary, there is 0 < n < £ such that X((xq — t, xq +1) n 2?¿) > t for

every 0 < t,8 < n. This implies that xq is a bilateral limit point of D¿. Since / is

bounded and approximately continuous at xq,

limitF(xo,/i) — f(xo).
h—*0

Let — n<c<Q<d<r]he such that both \F(x0,c) — /(xo)| < £ and \F(xo,d) —

f(x0)\ < £. By the continuity of F there is 0 < 8 < £ such that both \F(x,c) —

/(xn)| < £ and \F(x,d) — /(xo)| < £ whenever x E (x0 — 8,x0 + 8). Let a E

(xo - 8, x0) n D„ and b E (xo,xo + 8)nD„. Then for every \h\ < r\,

X((x -h,x + h)C\H)> 2h(l - e/2)    for x = a or b.

Supposing, as we may, that |/| < 1, this implies that for x — a or b and \h\ < n,

±JX     f(t)dt-f(x0)  <jf¡f_     \f(t)-f(x0)\dt

f \f(t)-f(x0)\dt+ [ \f(t)-f(x0)\dt
J{x-h,x+h]nH J[x-h,x+h]\H2h

£        £
<2 + 2^£-

this shows that R = [a, b] x [c, d\ has the desired properties and the proof is complete.

THEOREM 6.   Within Bi, the following is true:

EXT = AC = Conn = D = PR = Zc = PC = Zw = CC = SM.

PROOF. We will show that DBi => EXT by reducing the problem to the

bounded approximately continuous case and calling on Theorem 5. Let / be DBi.

It follows from "Maximoff's Theorem" [14] (see p. 36 of [3]) that there exists a

homeomorphism h oí I onto itself such that f oh is approximately continuous (ac-

tually, there was some problem associated with the original proof of this theorem,
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but this has recently been straightened out by Preiss in [15]). Then, let A be the

arctangent function and g = Ao(foh). g is bounded and approximately continuous.

Now, assume g is extended appropriately to R and define

owo-fa £?•">* i!k*0'
I fix) if k = 0,

as in Theorem 5. G is PC (and therefore Conn). Since #(0 is approximately

continuous and —7r/2 < ^(0 < n/2 for every i, it follows that —7r/2 < G(x, k) < -k/2

for every x and k. Thus we can define F to be F(x,k) = A~1[G{h~1(x),k)] for

each x and k. F is still Conn and is an extension of the original /. This completes

the proof.

We now state several open problems.

Problem 1. EXT # AC in L but EXT <= AC in Bi. What is the first class
among B, Ji, Ri in which AC => EXT?

Problem 2. How are the topological properties related within the function classes:

U :  universally measurable functions,

Bw :   functions with the Baire property in wide sense,

Br :  functions with the Baire property in restricted sense,

(s) :  Marczewski-measurable functions?

These classes fit with the others as follows:

See [2] for definitions and discussion.

Problem 3. Extend this investigation to higher dimensions. Certainly, the classes

Bi,Ri,B have natural analogs for functions of two real variables, as do properties

EXT, AC, Conn, D, PR (without bilateralness), PC, Zc and Zw (without bilateral-

ness), and CC.
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