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Abstract. A link Lß(2k, n - 2k) is defined by a type (2k, n - 2k) pairing of an

«-braid ß if the first 2 k strands are joined up as in a plat and the remaining n - 2 k

as in a closed braid. The main result is a formula for the Jones polynomials of

Lß(2k,n - 2k), valid for all k, 0 < 2k < n, which generalizes and relates earlier

results of Jones for the cases n = 0 and 2k.

1. Introduction. Let Bn denote Artin's «-string braid group [Ar], n = 1,2,3,_

Thinking of elements of Bn as geometric braids, there are two well-known ways,

dating back to Alexander [Al] and Reidemeister [R], to construct a link from an

element a of Bn. The first identifies the n free ends at the beginning of a with the n

free ends at the end of a to form an (oriented) closed braid, denoted â. The second,

assuming n to be even, identifies adjacent pairs of strands at each end of a to form

an (unoriented) plat à.

Let An, n = 1,2,..., be the sequence of von Neumann algebras described in [Jl]

generated by projections ex,...,en_x. Let rt: Bn -» An, t e C, be the 1-parameter

family of representations of Bn in An, and let tr: An -* C be the Jones trace. For

each a e Bn, Jones defines a polynomial

(1) V,(t) = S-Hr(rt(ß)),

where 8 - — (1 + t)/ yft, and shows that it is an invariant of the oriented link type

of â.

Starting with a fixed braid a e B2k it seems on the face of it that the link types of

â and â are quite unrelated; for example, one may alter a so that â remains fixed,

while â is changed from a knot to a link. It therefore seemed remarkable when Jones

discovered in early 1985 (see [J2]) that their polynomial invariants were given by

closely related formulas, viz (1) and

(2) V&(t)*83k-lti(rt(a)e1e3---e2k_1),
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where = means up to a multiplicative power of -ft. Note that the discovery of (2)

as reported in [J2] was inspired by work on the Potts model in statistical mechanics,

and so involved a chain of ideas which seemed very far from the studies which led to

the discovery of (1).

One can also define a link from a closed braid by joining up the 2n free ends of

the braid strings in pairs in still other ways. Assuming that the braid is defined by a

regular projection onto a plane P, we restrict our attention to pairings in which the

free ends of a are joined up by n disjoint arcs in P (since if the arcs were to cross,

the crossings could be subsumed into the braid). Call such a pairing type (2k, n - 2k)

if the first k pairs of strings at both ends of the braid are joined up as in a plat and

the remaining n - 2k as in a closed braid (see Figure la) and let La(2k, n — 2k)

denote the link so obtained. Up to canonical modifications in the defining braid, all

noncrossed pairings may be obtained in this way.

(b)

Figure 1

The first result in this paper (Theorem 1) generalizes formulas (1) and (2) to a

single formula for the Jones polynomial of LJ2k, n - 2k), 0 < 2k < n. At the

same time we will show that if one places a mild restriction on the defining braid a,

then there is a well-defined "standard" way to orient the plat La(2k, n — 2k), and

with this choice of orientation we can identify the multiplicative power of t in (2)

precisely. Our proof is elementary and different from that in [32], and it explains the

relationship between (1) and (2).

The second result is an application of Theorem 1 to prove that there is a "surgery

triple" which relates the polynomials VL , VL , VL of three links Lx, L_x, Lx. Let

L0, Lx, L_v Lx be four links which are defined by diagrams (no longer necessarily

coming from braids) which are identical everywhere outside a small disc D, and are

as illustrated in Figure 2 in D. Note that L0, Lx, L_x are all oriented, but the

component of Lx which is associated to the strands inside D has no natural

Figure 2
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orientation. By Theorem 12 of [Jl] the Jones polynomials of L0, Lx, L , are related

by

(3) VL0 = \{t-lVLi-tVL_),

where p = (t — 1)/ yr\ (Caution: see Comment 4.2 at the end of this paper.) We

will prove (Theorem 2) that there is a similar formula which relates VL , VL , and

VL . The most interesting case (the Corollary) occurs when Lx, and hence also L_x

and Lx, are knots.

Remarks. This manuscript subsumes two earlier versions, [B] and [K]. Our results

in those two papers were related, with [B] proving a more general result than [K], but

by a more complicated method than that in [K]. We decided to combine our two

papers.

Theorem 2 was originally proved simultaneously by Jones (private letter) and by

the first author in [B]. It was then used by Lickorish in [L] where a different proof is

given. The proof which we give here is different from both that in [B] and that in [L].

2. The Jones polynomial of La(2k,n - 2k). The key to pinning down the

multiplicative power of t in (2) and in its generalization (below) will be seen to be

related to having control over orientations in La(2k, n — 2k). With this in mind we

begin by placing a (mild) restriction on the defining braid a e Bn. The braid a will

be said to be admissible for La(2k,n-2k) if the partial orientations on

La(2k, n — 2k) are those indicated in Figure lb.

Lemma 1. Any braid ß e Bn may be altered to an admissible braid a, with

La(2k, n — 2k) = Lß(2k, n - 2k), by adding appropriate half-twists at the top and

bottom of ß.

Proof. Clear.   D

Assume from now on that a e Bn is admissible for La(2k, n - 2k), and that the

plat part has been oriented as in Figure lb. If this does not determine orientations

on all components of La(2k,n — 2k), then the unoriented components may be

oriented as in a closed braid, say from top to bottom in the braid part. We call this

the standard orientation for La(2k,n — 2k). Observe that the standard orientation

on La(2k, n — 2k) determines orientations on the individual braid strands of a.

When we need to specify these, we will write a, to distinguish a from a, the same

braid with each strand oriented top-to-bottom.

Lemma 2. Let a be defined as above. If the strands of a are identified by a type

(0, n ) pairing, as in a closed braid, then the resulting link La(0, n ) can be given a

consistent orientation, using the orientations on the strands of St.

Proof. Modify the diagram for La(2k, n - 2k) by pulling the upper plat parts

around the braid until they are next to the corresponding lower plat parts, as in

Figure 3. Now do "surgery" on the link, changing the tangles inside the dotted discs

from the tangle labeled 0 in Figure 2 to the tangle labeled 1. The result will be

La(0, n) oriented consistently to agree with the orientation on a.   D
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Figure 3

We are now ready to state and prove our first result. Let La(0, n) be the closed

braid link determined by a. Then La(0, n) is obtained from La(0, n) by reversing the

orientation of the "wrongly ordered" sublink K. Let X be the linking number

lk(K,La(0,n)-K).

Theorem 1. Let a <= Bn be admissible for La(2k, n - 2k). Assume that the link

La(2k, n — 2k) has the standard orientation. Then

(4) VK(2k^lk)= ¿H»^-Hr(rt(a)exe, ■■■ e2k_x).

Proof. See Figure 3. Let {LCiC2... tjr; e, g {0,1, -1}} be the collection of 3* links

which are obtained from the link in Figure 3 by inserting in each of the k discs the

tangles from Figure 2 which correspond to the choices of ex,..., eK. Note that each

triplet (L£]...0... 8k, Le¡...x...£j(., £El... _, ...Ei) is a 0, 1,-1 surgery triple, so that the

corresponding Jones polynomials are related by equation (3).

Consider the special cases when each e, = +1. Examples are given in Figure 4,

when 2k = n = 4. Each L.. ....   is the closure of a braid 5P .     .   = ao}'*^}'*2

• • • o2k-v and so can De obtained from the closed braid Le^2 ...t  by reversing the

orientation on a sublink J?,...... We study how the linking numbers X, =

lk(AeiE2...eif,Leie2...ejr - Keie2-..CK) vary for different choices of the e,'s in the set

{+1}. Note that each appearance of -1 in the array exe2 •••£/(- corresponds to a

square o22i_x in ao\~e¡o¡~e2 ■ ■ ■ o\'Kc^v Now, the portion of the link diagram which

is associated to this square always involves distinct components. The reason is that

the two strands are oppositely oriented, and there is no way for an upward-oriented

braid strand to be joined to a downward-oriented braid strand in a link of type

(0, n). Let rnE¡S2...     be the number of occurrences of -1 in the array e,e2 • • ■ e^-.
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Then

(5) XF_ ....  = -X + m,_ .... .

Now Jones' reversing result (see [L-M] or [M]) tells us that

\yj «1«2 —«K «1«2 ' " «Í

Formulas (1), (5), and (6) then imply that the polynomial VCiti... tK is given by

(7) Kh~* = S"-1/3X-3m^~>*\x{ag\-*g\-°> ■ ■ ■ g\-KL\)

where a = /-,(«), g, - rt(a¡) = ft(tex - (1 - e,)).

We will have no more use for L, .     . , so from now on we drop the arrow,

writing a, L, V for a, L, V. We are ready to compute Vm... 0 = VL^(2kn_2k)(t). The

reader may find it helpful to follow the pictures in Figure 4, which illustrate the case

2 k — n = 4. Construct a tree of 2*+1 - 1 links, arranged in k + 1 rows, with

Loo... 0 at the base. Place the two links { Le¡0... 0; ex = +1} in the second row from

the bottom, the four links {Leie2o ..0; e< = -1} aDOVe these, and so forth, ending

with the 2k links {Z,...   ; e,■ = ±1} in the top row. There is a natural order in

each row, dictated by working up from the bottom and requiring that the links in the

tree   group   themselves  into  (0,+,-)   surgery   triples  (Le¡ ...0„.tjr, Le¡.......   ,

Lc ..._!...,), with the " + " and "-" member of each triple directly above the "0"

member. Applying (3) repeatedly, we can then work our way up the tree, to express

Vqq ... 0 as a sum of the polynomials of the links which lie above Loo... 0 m the tree,

viz:

MX) •• 0 = ~ \ '     '10 -o ~~ t* -10 • • • 0 /

3(rl(?"%o...o - ^i-io ...o) - '('"^-uo-o " í^-1-io...o))

1

M2

Y     t-l)mnn     ^rk-2mvl...tkV

r    e,= ±l

which by virtue of (7) becomes

^oo...O = ^1^    E    (-l)"w   '>rk--"n'r-.>tl(agl-*g\-°> ■•• g\-kt\).
r1 e,—+1

Magically, one recognizes that the 2k terms in the sum combine into a single

formula:

(8) Vm ...0 = Sn~lt   {'k1] r2\r{a{gl-t){g¡-t)---(glk.x-t)).

Then g, = ft((t + l)ei - 1) (see [Jl]) implies that

(9) g--t= -t2¡i8e¡,       l</<n-l.

Substituting (9) into (8) we obtain (4), and our proof is complete.   D



692 J. S. BIRMAN AND TAIZO KANENOBU

¿i.o \

Figure 4

3. Surgery triples. In this section we apply Theorem 1 to give the promised

formula which relates the polynomials Vx, V_x, Vx of three links Lx, L_x, Lx

which are defined by the surgeries in Figure 2.

Recall that if A is a sublink of L, then X(K) means lk(K,L - K). Note that

there is no canonical way to orient the components of Lx which extend the surgered

arcs. The reader is referred to Figure 5 for the description of the various possible

components Kj of L-, j = 1, -1, oo.
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(a)

(a)'

case (a) case (b)

N
-.JT

(b)

(b)'

,-«r¿

case (a)' case (b)'

Figure 5

Theorem 2. The Jones polynomials of Lx, L_x, Lx are related by

(10)
where q is given by

V1-tV_l + t3«(t-l)Vx = 0

case

a X(K¿)

b MKlJ+i
a' X(A02) - X(KX)

V X(K\x)+\-X(Kx)

Proof. We consider the cases (a) and (b), since (a') and (b') follow from (a) and

(b) by Jones' reversing result. For the purposes of the proof, we may assume that L,

is a closed braid, for any link may be so represented, and the deformations which

take it to a closed braid can be taken to avoid the surgered disc. By isotopy and

conjugation, the crossing of interest can then be moved to the lower left part of the

braid. Finally, inserting oxlox in the braid, if necessary, we can assume the braid has

the form ßax. Thus we assume: Lx = (ßox), L_x = ß, Lx = Lßa (2, n — 2) for (a)

and Lß(2, n - 2) for (b). By Theorem 1 we then have

(t^S'tsirXfioiM    for (a),

00      \t^8"tr(rl(ß)ex)        for(b).

The integer X in equation (11) is defined as in Theorem 1, viz: orient the plat part of

Lx as in Figure lb, and then construct the associated closed braid (in our case it will

be (ßo-j) or (ß)); then X is the linking number of the "wrongly ordered" sublink of

that closed braid.

(H)
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Apply (9) and (1) to (11). For (b), this gives

Vx=-t^a-i8"-Hrlr,(ß){g?-t)}

vx - tv_x + t-*x-w(t - l)Vx = 0.

For (a), noting gxex = t3/2ex, we have

vx-tv_x + r3X(t-i)vx = o.

It is easy to check that X = -X( A02) for (a) and -X(Klx) for (b).   D

Corollary. If Lx is a knot, thenL_x and Lx are likewise, and

(12) Vx-tV^x + t3MLo)(t-l)Vx = 0,

where X(L0) is the total linking number ofL0.

Proof. The assertions about connectivity are proved in Figure 5. If Lx is a knot,

then L0 has two components, and the result follows from Theorem 2.   D

4. Comments.

4.1. The Corollary allows one to compute Vk(t) for an arbitrary knot k by

choosing a minimal set of crossing changes which unknot k, and then constructing a

tree of knots in which each interior node corresponds to a single (1, -1, oo) surgery

and each braid ends in the unknot, with polynomial 1. Orientations will not matter,

because we are working with knots. In principle, this ought to give a very simple tool

for investigating Vk(t) for knots, were it not for the fact that each time one does the

(1, —1, oo) surgery one has to compute X(L0), and the numbers so obtained seem

unpredictable. They appear to play a crucial role in Vk(t).

4.2. In this paper we use conventions in our definition of VL which are consistent

with formula (3), correcting an error in Theorem 12 of [Jl], which is inconsistent

with earlier conventions in that same paper.

4.3. Very new results of Louis Kauffman (private letter) show that e/s in Jones'

algebra An may be interpreted geometrically as braid-like objects (see Figure 6)

which compose in much the same way as braids, by concatenation and rescaling.

With this interpretation the formula (2) becomes transparent, because on adding the

"weaving pattern" exe3 ■■• e2k_x to the end of a geometric braid a and then

identifying top and bottom as in a closed braid, one obtains immediately the link

La(2k, n - 2k).

1 I   Q     1_
1       2 ¡-1    '   i+I  '+2 n

Figure 6
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