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ABSTRACT. Properties of completely regular spaces with complete exhaustive

sieves are studied using the equivalent notion of partition complete spaces and

associated games. Among others the following results are proved. (1) If X is

the intersection of countably many partition complete subsets of Y, then X is

partition complete. (2) If X is K-scattered, where K is the class of all partition

complete spaces, then X is partition complete. (3) If X is a primitive set in a

C-scattered space Y, then X is the intersection of countably many C-scattered

subsets of Y. (4) The partition completeness is perfect and preserved by open

maps.

Each space is assumed to be completely regular and Tx.

DEFINITION 1. A partition P of a space A is called left-open if there is a

well-ordering <onP such that U(^": P' ^ P) ls open for every P G P.

Clearly, a space is scattered iff it has a left-open partition into singletons.

DEFINITION 2. A space A is called partition complete if it admits a complete

sequence of left-open partitions. A sequence (Pn : n < u>) of left-open partitions of

X is called complete if

(i) Pn+i refines Pn for all n < u,

(ii) if P, P' G Pn, Q, Q' G Pn+X, Q C P, Q' C P' and Q < Q', then P < P', and
(iii) if (Pn : n < w) is a sequence such that Pn+i C Pn G Pn for all n < ui and if

7 is a filter base in A controlled by (Pn : n < w), then f]{F: F G 7} ^ 0. A filter

base 7 is controlled by (Pn : n < ui) if each Pn contains some F G 7.

DEFINITION 3 [M]. A cover U of a space A is called exhaustive if every nonempty

subset S of A has a nonempty relatively open subset of the form f/flS where U Gil.

The following propositions are easy to check.

PROPOSITION 1.   Every left-open partition of X is an exhaustive cover of X.

PROPOSITION 2. Every exhaustive cover of X can be refined by a left-open

partition of X.

DEFINITION 4 [M]. A sieve (U, A,ir) is called complete provided that for every

sequence (an: n < oj) with an G An and 7rn(an+i) = an, if J is a filter base

controlled by (Uan : n < w), then f]{F: F 6 7} / 0. A sieve is called exhaustive

if {Ub : b G ir~l (a)} is an exhaustive cover of Ua for every a G An and n < lo.
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The following theorem can be seen to be equivalent to Proposition 4.1(b) and

(d) of [M], which involves sieves with pairwise disjoint levels.

THEOREM l [M]. A space X has a complete exhaustive sieve iff X is partition

complete.

The next two theorems provide evidence for significance of complete exhaustive

sieves.

THEOREM 2 [M]. A metrizable space is completely metrizable iff it has a com-

plete exhaustive sieve.

THEOREM 3 [W]. A paracompact space is Cech complete iff it is a p-space

having a complete exhaustive sieve. A space has a complete open sieve (i.e., it is

sieve-complete) iff it has a complete exhaustive sieve and is a monotonie p-space.

Michael's game M(X). Players I and II alternately choose nonempty subsets

So D T0 D Si D Ti D ■ ■ ■ oí X such that Tn is relatively open in S„ for all n < lj.

Player II wins iff whenever 7 is a filter base in A controlled by (Tn : n < oj), then

f]{F: FG7}±0.

THEOREM 4 [M].   For a regular space X, the following are equivalent:

(a) A has a complete exhaustive sieve;

(b) Player II has a stationary winning strategy for M (A);

(c) Player II has a winning strategy for M(X).

Although all proofs given below can be presented in the framework of Definition

2, it turns out to be more convenient and transparent to use the game-theoretic

characterization of partition completeness. We shall use Theorems 1 and 4 in the

subsequent proofs without special mention.

THEOREM 5. If Xn C Y each Xn is partition complete, then X = f){Xn '■ n <

oj} is partition complete.

PROOF. Without loss of generality we may assume that A ^ 0. Let on be a

stationary winning strategy of Player II in M(Xn) for all n < w. We shall define a

winning strategy a for Player II in M (A). Let {Nk : k < w} be a partition of u into

infinite sets. Given any n and a partial play (So,Tb,..., Sn) of M(X), we define

ct(So, ... ,Sn) = (Tk(Sn), where fc is the unique number such that n G Nk- Let

(So, To, Si,T\,... ) be a play consistent with a. Let J be a filter base (of subsets

of A) controlled by (T„ : n < oj). Without loss of generality we may assume that

7 has at most one cluster point in Y (for instance, let y G (~\{F: F G 7}, where

the closure is taken in ßX, and let U be a neighborhood base at y in ßX; then

{FC\U: F G 7¿iU G U} is a filter base in A, finer than 7, and having at most one

cluster point in A). We shall show that C]{F (IX: F G 7} ¿0. Fix a fc < w and

write Nk as {fc(n): n < lo}, where fc(0) < fc(l) < • • •. Then Tfc(n) = Ofc(Sfc(n)) for

each n < w, i.e., (Sk(o),Tk(o), Sk(i),Tk(i), ■ ■ •) is a play of M(Xk) consistent with

Ok- Therefore f]{FDXk : F G 7} = {xk} for some Xk G Xk- Since 7 has at most one

cluster point in Y it follows that x0 — xx = ■ ■ ■. Hence f]{F n A: F G 7} — {x0}-
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THEOREM 6. If Xn is partition complete for all n < oj, then P{A„ : n < oj} is

partition complete.

PROOF. Observe that if A is partition complete and Y is compact, then X xY

is partition complete. Let (Xn : n < w) be a sequence of partition complete spaces,

y be a compact space containing all An's, and Yn = {y G Yu : y(n) G Xn}. Then

each Yn is partition complete and therefore f]{Yn : n < w} is partition complete

by Theorem 5. Since the last set is homeomorphic to P{An : n < to}, the theorem

follows.
DEFINITION 5 [Ta]. A space A is called K-scattered, where K is a class of

spaces, if for each nonempty closed subset E of A there is an open set U in A such

that E n U £ 0 and ËTâî G K.

PROPOSITION 3 [JST]. If K is a class of spaces such that E G K whenever E

is a closed subspace of a space in K, then the following are equivalent:

(a) A is K-scattered;

(b) A has a left-open partition P such that P G K for all P G P.

THEOREM 7. If X is a K-scattered space, where K is the class of partition

complete spaces, then X is partition complete.

PROOF. By Proposition 3, A has a left-open partition P such that P G K for

all P G P. Therefore Player II has a stationary winning strategy op in M(P). We

define a strategy a for Player II to win M (A) as follows. Suppose So is the first

move of Player I in a play of M (A). Let P be the first member of P such that

P n So t¿ 0. Put cr(So) = 6Tp(S0 fl P). Since S0 l~l P is relatively open in S0, the

set tr(So) is relatively open in So- Let To = cj(So) and let Si C T0. Then we put

cr(So,Si) = op(Si), etc. Clearly, the play continues in P. If (So,2b, Si, 7\,...)

is a play in M(X), then if P is as above, Tn C P for all n < oj. Moreover,

(So fl P,To, Si,Ti,... ) is a play in M(P) consistent with op. If 7 is a filter base

controlled by (Tn : n < oj), then so is {F fl P: F G 7}. Hence

0 ^ f){FñP: FG7}C f](F: F G 7} C P,

so A is partition complete.

Theorem 7 does not hold for sieve completeness (see Example 2 below).

It is easy to check that closed subsets and open subsets of a partition complete

space are partition complete. From Theorem 7 we get a stronger result.

COROLLARY 1. If X is a K-scattered subset of a partition complete space Y,

where K is the collection of all closed subsets of Y, then X is partition complete.

In other words: If X is a resolvable subset (see [Ti]) of a partition complete space

Y, then X is partition complete.

Let C and C denote the class of compact spaces and Cech complete spaces

respectively. We shall use C-scattered and C-scattered spaces below.

COROLLARY 2. If (Xn: n < oj) is a sequence of C-scattered (or C-scattered)

subsets of a space Y, then X = (~]{-Xn : n < oj} is partition complete.

The next example shows that a space A need not be C-scattered if it is the

intersection of countably many C-scattered spaces, even if it is also sieve-complete.
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EXAMPLE l. A sieve complete space A that is nowhere locally Cech complete

(thus is not C-scattered).

Construction. Let A = Yu, where

Y = (ojx + l)2 \ ({(wi,or + 1): a < ojx} U {(ojx,oji)}).

The space Y is sieve complete, because (ojx + l)2 \ Y is compact-like (see [T3]).

Furthermore, Y is not Cech complete, because (ojx + l)2 \Y is not CT-compact.

Finally, A is nowhere locally Cech complete, because Y is not Cech complete.

The notion of a presieve was introduced in [W], while the (equivalent) original

definition was given in terms of primitive sequences (see [WWi, WWa]).

DEFINITION 6. Let A c Y. A presieve of A in y is a triple (U,A,ir) =

((Un,An,irn): n < oj) such that for each n < oj:

(a) An is well ordered;

(b) nn : An+X —► An is order preserving, i.e., if a < b then nn(a) < irn(b);

(c) Un = {Ua : a G An} is a family of subsets of Y;

(d)Xc\J{Ua:aGAn};

(e) Ua C C/Wn(o) for every a G An+1;

(f) X r\p(Ua,Un+x) C p(Unnta),Un) for every o G An+1, where p(Ua,Un) =

Ua \ V){Ub : b < a}; p(Ua,Un) is called the primitive part of Ua-

DEFINITION 7 [Ph]. A subset A of a space F is a primitive set in Y if there is

an open (in Y) presieve (U,A, tr) of A in Y such that

f]{(Uan,Un):n<oj}cX

for every sequence (an: n < oj) such that -Kn(an+X) = an whenever n < u.

Note that the following kinds of sets are primitive sets: open sets, Gg sets, sets

of interior condensation (i.e., Wg sets), and primitive sets of interior condensation

[WW3] (i.e., subsets A having an open presieve (U,A,ir) such that f]{Ua„ : n <

oj} C A whenever f]{p(Uan, Un)- n < oj} ^ 0 where 7rn(an+i) = an for every

n < oj).

THEOREM 8. If X is a primitive set in a partition complete space Y, then X

is partition complete.

PROOF. Let (U,A,ir) be an open presieve for A in Y such that f]{p(Uan, Un) : n

< oj} C X whenever 7rn(an+i) = an for every n < oj, and let it be a winning

strategy of Player II in M(Y). We shall define a winning strategy r for Player II in

M (A) as follows. If Sn is a nonempty subset of A chosen at move n, we find the

first an in An such that Sn fl Ua„ ^ 0. Clearly, the set Sn fl Uan is relatively open

in S„. Let Vn be a nonempty open set in Y such that VnC\Sn^0 and Vn C Ua„-

We put r(Sn) = ct(S„ fl V„). It is easy to verify that t is a winning strategy.

EXAMPLE 2. A partition complete (scattered Lindelöf) space A that is not a

primitive set in ßX (hence A is not sieve-complete).

CONSTRUCTION. Let A = wU{p} be a subspace of ßoj, where p G ßoj\w. Clearly,

A is a scattered Lindelöf space. Suppose (U, A, ir) is an open presieve of A in ßoj.

Let an — min{o G An : p G Ua}. Then p(Uan,Un) = Ua„ \ Vn for some Vn C w.

Let V = \J(Vn: n < oj). Then W = Ç]{p(Uan,Un): n < oj} = f\{Uan: n <oj}\V.
Since W is a Gg set containing the point p, it must be uncountable. Hence W is

not a subset of A, and therefore A is not a primitive set in ßoj.
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Note that if A is sieve-complete and if F is a compactification of A, then A is

a primitive set in Y. In [T3] it was shown that each sieve-complete space is the

intersection of countably many C-scattered spaces. In Theorem 9 we get a more

general result.

THEOREM 9. If X is a primitive set in a C-scattered space Y, then X is the

intersection of countably many C-scattered subsets ofY.

PROOF. Let Sn be the set of all (ao, ■■■, an) G A0 x Ax x ■ ■    < An such that

7T0(ai) =a0,7ri(a2) = ax,... ,7r„_i(an) = an-i-

Let

P(a0,..., On) = f]{p(Uak ,Uk):0<k<n}

and

Xn — \^}{P(a0, • • • ' a"): (a0> • • • ) an) € Sn}.

Claim l. f]{Xn: n < oj} = X.
Let x G X. Then there is a unique sequence (ao, ax,...) such that (ao,... ,an) G

Sn for every n < oj and x G f){p(Uan,Un '■ n < oj}. Therefore x G P(ao, ■ ■ ■ ,an) C

Xn for every n < oj. To show the converse inclusion, assume that x G f){Xn : n <

oj}. Then there is a unique ao € Ao such that x G p(Uao,llo), there is a unique

ai G Ax such that (ao,ai) G Sx and x G p(Uai,Ux), and so on. Hence x G

f){p(Uan,Un):n<oj}cX.

CLAIM 2. Each Xn is C-scattered.

Since A0 is open in Y, it is C-scattered. Moreover, it is easy to see that each

p(Ua, Un) is C-scattered, and therefore each P(ao,... ,an) is also C-scattered. Let

Fbea nonempty relatively closed subset of An+i. Find the first ao G Ao such

that F D p(Uao, Uo) / 0, find the first ai G Ax such that (a0,ai) G Sx and

F n p(Ua¡, Ui) t¿ 0, and so on, until (ao,ai,... ,a„,an+i) is defined. Now F C\

P(ao,ai,... ,an,an+i) is nonempty, C-scattered, and relatively open in F. Thus

F has a point of local compactness.

Actually, a more general statement than Theorem 9 is valid (and can be proved in

the same way): If A is a primitive set in Y, then A is the intersection of countably

many /f-scattered subsets of Y', where K is the collection of all closed subsets of

Y.
Question 1. Does a converse to Theorem 9 hold?

From Theorem 9 and Corollary 2 we get

COROLLARY 3. If X is a primitive set in a C-scattered space Y, then X is

partition complete.

However, Corollary 3 can also be derived from Theorem 7 and Theorem 8.

EXAMPLE 3. A dense subset A of a compact space Y such that A is a primitive

set in Y, but A is not a Wg-set in Y (that is, X is not sieve-complete).

CONSTRUCTION. Let Y be the long line with endpoints. Points of Y, except

for the last point Wi, can be uniquely represented asa + r, where a G [0,oji) and

rG [0,1). Let X = Y \ {a + 1: a < oji} and

Un = {[0,1)} U {(a + 1,a + 2) : a < ojx} U {(an(X), A + 1) : A 6 A} U {A},
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where A is the set of all countable limit ordinals and {an(A): n < oj} is a fixed

increasing sequence of ordinals with liman(A) = A. Note that A is a C-scattered

Lindelöf space and A is dense in Y. However, Y \X = {a + 1: a < oji} 'is an

uncountable discrete space, so it is not Lindelöf. Hence X is not sieve-complete by

Theorem 1 of [T3]. Finally, (Un : n < oj), where every Un is ordered in the natural

way as written above, determines a sequence ((Un,An,irn): n < oj) satisfying the

conditions of Definitions 6 and 7. Thus A is a primitive set in Y.

Question 2. Is there a first countable space Y with a dense subset A satisfying

the conditions of Example 3? Is there a first countable partition complete space A

that is not sieve-complete? (Such a space A cannot be scattered.)

THEOREM 10. Let X be a partition complete space and f be a perfect mapping

from X onto Y.  Then Y is partition complete.

PROOF. Let ct be a winning strategy of Player II in M(X). We shall define a

winning strategy r for Player II in M(Y).

CLAIM. If S is a nonempty subset of Y and if E is a relatively closed nonempty

subset of /_1(S), then there is a relatively closed subset p(E) of E such that

f(p(E)) = f(E) and f(E') ^ f(E) for every relatively closed proper subset E' of

p(E).   '
The proof of the claim is standard and therefore is omitted.

Let So be a nonempty subset of Y. Put S'0 = p(f~1(So)), T¿ = ct(S0), T0 =

So\f(S0\T¿), and r(áfo) = To- Observe that T0 is relatively open in So- Moreover,

T0 / 0. For, if 2b ¿ 0, then f(SQ \ T0) = S0; since /(S0) - S0, we have
S'q\Tq — S'o, that is Tq — 0, a contradiction. Let Si be a nonempty subset of

T0. Then Si n f(S0 \ T¿) = 0, hence /-1(S0 D (S¿ \ T¿) = 0, and consequently
/-1(Si)nS¿ C T¿. Since f-1(Si)nS{) is relatively closed in /-1(Si), we put S{ =

ptZ-^Si) n So). Observe that S'x / 0. Put T{ = a{S[), Ti=Si\ f(S'x \T{), and
r(So, Si) = Ij. Observe that Ti is relatively open in Si. Moreover, Ti ^ 0. For, if

Ti = 0, then Si C f(S'x\T{) C f(S[) = Si, and hence S[ = S'i\T{, that is T[ = 0,
a contradiction. Continuing in this manner we get a play (S0,Tq,S'i,T[,...) of

M(X) consistent with ct and a play (So,To, Si,Ti,... ) of M(Y). Let 7 be a filter

base in Y controlled by (Tn: n < oj). Then {f'^F) n Sn: F G 7kn < oj} is a

filter base in A controlled by (Tn: n < oj). For, assume that F C Tn for some

F G 7 and some n < oj. Then F C Sn\ f(Sn \ Tn), so F n f(Sn \ Tn) = 0. Hence

f~l(F) n (Sn \ Tn) = 0, and consequently f~1(F) D Sn C Tn. Now we show that

/_1(F) fl Sn t¿ 0 for every F G 7 and every n < oj. Suppose to the contrary that

f~1(F) r\Sn = 0 for some F G 7 and some n < oj. If n = 0, then f(S{¡) = S0, so

we get F n S0 = 0, a contradiction. If n > 0, then Sn = p(/_1(S„) n Sn_x) and

f(Sn) = /(/_1(S„) n S^_i) = Sn, thus F n Sn — 0, a contradiction. Since ct is a

winning strategy, we have

[\{f-i(F)C\T'n: FG7kn<oj}¿0.

Now, since _

f-1(F)nrn c J=Wl c rl(F)
and

fli/"1^) : F \ 7} = f-1 ([)&■ ?£?}),

it follows that n{^: F G 7} ¿ 0.
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The following example shows that a closed continuous image of a partition com-

plete space need not be partition complete.

EXAMPLE 4. A partition complete space A and a closed continuous mapping /

from A onto a first category space.

CONSTRUCTION. Actually, a variant of this example is used in [Pu, Example

2] for another purpose. Let A = ®{Z?n: 0 < n < oj}, where B = {a + 1: a <

oji} U {oji}. Then A is a Lindelöf scattered P-space. Let Y — {y G (Bw)g : 3n < oj

Vfc > n y(k) = oji}, where (Bu)g denotes the space Bu endowed with the Gg-

topology. Then F is a Lindelöf self-dense P-space. Finally, let x G Bn; we put

f(x)(k) = x(k) if fc < n and f(x)(k) = u\ if fc > n. Clearly, each f(Bn) is nowhere

dense in f(Bn+1), thus F is of the first category. Since A and F are Lindelöf

P-spaces, their Lindelöf subsets and closed subsets coincide. Since / is continuous,

the image of a Lindelöf set in A is a Lindelöf set in F. Therefore the mapping / is

closed.

THEOREM 11. If f is a perfect mapping from a space X onto a partition com-

plete space Y, then X is partition complete.

PROOF. Let ct be a winning strategy for Player II in M(Y). We define a winning

strategy r for Player II in M (A) as follows. Given a nonempty subset S of A, we

put

r(S)^Snf-1(a(f(S))).

Since /-1(<r(/(S))) is relatively open in /_1(/(S)) and S C f~1(f(S)), it follows

that t(S) is relatively open in S. Moreover, r(S) ^ 0. For, suppose that t(S) — 0.

Then f(S) Da(f(S)) = 0, soct(/(S)) = 0, a contradiction. Let (S0,T0,Si,Ti,...)
be a play of M (A) consistent with r and J be a filter base in A controlled by

(Tn:n< oj). Put Sn = /(S„) and Tn = a(Sn). Then Tn = Sn n f-\Tn).
Clearly, {/(F): F G 7} is a filter base in F. Suppose that F G 7 and F C T„ =

Sn fl f~x(TL) for some n < oj. Since F C /^(T«), we have f(F) C f(f-1(Tn)) =
Tn. Therefore {f(F): F G 7} is controlled by (TL: n < oj) and consequently

Qt/(F): F_G 7} ¿ 0. Pick a, point y in C\{J(F): F G 7} and fix F G 7. Since
f(F) C /(F), we have y G f(F), and consequently f~1(y) nF/0. Since f~1(y)

is compact, Ç\{f~l(y) HF: Fg7}¿0. Therefore, C\{F: F G 7} ¿ 0.
For the proof of the next theorem it is convenient to use the following modifica-

tion of the game M(X). Players I and II choose nonempty subsets So, Wq, Sx,Wi,. ..

of A so that for each n < oj: S„+i C Wn n S„, Wn+i C Wn, and Wn is open in

X. Player II wins the play (So,W0,Si,Wi,... ) iff whenever 7 is a filter base in

X controlled by (Wn D Sn: n < oj), then f]{F: F G 7} ¿ 0. Denote this game
by M'(X). It is easy to show that Player II has a winning strategy in M'(X) iff

Player II has a winning strategy in M(X).

THEOREM 12. IfX is partition complete, and if Y is an open continuous image

of X, then Y is partition complete.

PROOF. Let / be an open continuous map from A onto F and ct be a winning

strategy of Player II in M'(X). We shall define a winning strategy r for Player

II in M'(Y). Let S0 be a nonempty set in F. Put S¿ = /_1(5o), W¿ = ct(SÓ),

Wo = f(W¿) and r(S0) = W0. Let Si be a nonempty subset of Wo H S0. Put

S'i = W¿ n /"'(Si), W'i = ct(S0,W¿,S'x), Wx = f(W{), and r(S0,W0,SX) = Wx.
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Continuing in this manner we get a play (S0, W¿, S[, W{,... ) of M'(X) consistent

with ct and a play (So,Wo,Si,Wx,...) of M'(Y). Let 7 be a filter base in F
controlled by (S„ n Wn ■ n < oj). Then

J1 = {f~\F) nSnnWn:FG7&cn<oj}

is a filter base in A controlled by (Sn n Wn : n < oj). Hence f){F~' : F' G 7'} # 0.

Since

/ (f|{F: F' G 7'})  C f){/(ñ ■ F1 G 7'} C f]{J(ñ: F' G 7'}

cC\(F:Fg7},

we have f](F: F G 7) ^ 0. Therefore F is partition complete.

We note that a brief proof of Theorem 12 can be given by observing that an open

continuous image of a complete exhaustive sieve is a complete exhaustive sieve.

Concluding, we summarize the main completeness properties considered in this

paper.

COROLLARY 4.   (a) => (b) =>- (c) => (d) =>- (e) => (f) =>• (g), where

(a) A is a Gg set in ßX, i.e., X is Cech complete;

(b) X is a Wg set in ßX, i.e., X is sieve-complete;

(c) X is a primitive set in ßX;

(d) X is a primitive set in a C-scattered space;

(e) A is the intersection of countably many C-scattered sets;

(f) A is the intersection of countably many C-scattered sets;

(g) A is partition complete, i.e., X has a complete exhaustive sieve.
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