THE GAP BETWEEN cmp X AND def X CAN BE ARBITRARILY LARGE

TAKASHI KIMURA

(Communicated by Dennis Burke)

Dedicated to Professor Yukihiro Kodama on his 60th birthday

ABSTRACT. We give an example of a separable metrizable space X with def $X - \operatorname{cmp} X = n$ for every $n \in \mathbb{N}$.

1. Introduction. In this paper all spaces are separable and metrizable.

The compactness degree, cmp X, of a space X is defined as follows: a space X satisfies cmp X=-1 if X is compact; if n is a nonnegative integer, then cmp $X \leq n$ means that each point of X has arbitrarily small neighborhoods U with cmp Bd $U \leq n-1$. We put cmp X=n if cmp $X \leq n$ and cmp $X \nleq n-1$. If there is no integer n for which cmp $X \leq n$, then we put cmp $X=\infty$.

The *compactness deficiency*, def X, of a space X is the least integer n for which X has a compactification αX with $\dim(\alpha X - X) \leq n$. We allow n to be ∞ .

In general, the inequality $\operatorname{cmp} X \leq \operatorname{def} X$ holds. The well-known conjecture of J. de Groot (see [2]) that $\operatorname{cmp} X = \operatorname{def} X$ has been negatively solved by R. Pol [5]; the space X of Pol's example has $\operatorname{cmp} X = 1$ and $\operatorname{def} X = 2$. In the review of R. Pol's paper [5], J. van Mill [3] states "It seems still to be open whether the gap between $\operatorname{cmp} X$ and $\operatorname{def} X$ can be arbitrarily large."

The purpose of this paper is to answer this question affirmatively. Namely, we shall give the following example.

EXAMPLE. For every $n \in \mathbb{N}$ there exists a space X such that def $X - \operatorname{cmp} X = n$.

2. Preliminaries. Let S be a collection of subsets of a space X. Then we shall write $[S]^n$ for $\{T: T \subset S \text{ with } |T| = n\}$, Bd S for $\{\text{Bd } S: S \in S\}$ and $\bigcap S$ for $\{S: S \in S\}$.

Let Y be a subspace of a space X and \mathcal{U} a collection of open subsets of X. Then \mathcal{U} is an *outer base* for Y in X if for every $y \in Y$ and any neighborhood V of y in X there is $U \in \mathcal{U}$ such that $y \in U \subset V$.

The following lemma is needed in §4; the proof is straightforward.

2.1. LEMMA. Let X be a space with def X < n and $\{(E_j, F_j): 1 \le j \le n\}$ a collection of pairs of disjoint compact subsets of X. Then for each $j, 1 \le j \le n$, there is a partition T_j in X between E_j and F_j such that $\bigcap \{T_j: 1 \le j \le n\}$ is compact.

Received by the editors December 22, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 54D35, 54D40, 54F45.

Key words and phrases. Compactification, dimension, compactness degree, compactness deficiency.

To show our example it suffices to construct a space Y with n < def Y - cmp Y < ∞ . Indeed, for this space Y we construct another space Z with cmp Z = def Z = $\operatorname{def} Y - n$; such a space exists (see [2, Theorem 3.1.1]). Let $X = Y \oplus Z$ be the topological sum of Y and Z. Then

$$cmp X = max\{cmp Y, cmp Z\} = cmp Z = def Y - n$$

and

$$def X = max\{def Y, def Z\} = def Y.$$

Thus we have $\operatorname{def} X - \operatorname{cmp} X = n$.

In the next section we shall construct a space X such that $m \leq \operatorname{def} X - \operatorname{cmp} X \leq$ 2m for every $m \in \mathbb{N}$.

Throughout the rest of this paper, we shall fix a positive integer m and put n=2m+1. Let I=[0,1] be the closed unit interval.

3. Construction. Let

$$\partial I^n = \{(x_i) \in I^n : x_i = 0 \text{ or } 1 \text{ for some } j, 1 \le j \le n\}$$

be the combinatorial boundary of the n-dimensional cube I^n . We take countable, dense subsets D_0 and D_1 in (0,1) with $D_0 \cap D_1 = \emptyset$. Let us set

$$M_i = \{(x_j) \in (0,1)^n : |\{j : x_j \in D_i\}| \ge n - m\},\$$

and

$$L_i = (0,1)^n - M_i$$

for each i = 0, 1. Then, obviously, $M_0 \cap M_1 = \emptyset$ and by [1, 1.8.5], dim $L_i = m$. Then, by [4, 12.12-13], there are two collections \mathcal{B}_0 and \mathcal{B}_1 of open subsets of I^n satisfying the following conditions (1) to (6) below:

- (1) \mathcal{B}_0 is an outer base for $(I^{n-1} \times [0, \frac{2}{3})) \cap \partial I^n$ in I^n ,
- (2) \mathcal{B}_1 is an outer base for $(I^{n-1} \times (\frac{1}{3}, 1]) \cap \partial I^n$ in I^n ,
- (3) $\bigcap \mathcal{F} \cap L_i = \emptyset$ for every $\mathcal{F} \in [\operatorname{Bd} \check{\mathcal{B}}_i]^{m+1}$ and each i = 0, 1,
- (4) Cl $B \subset I^{n-1} \times [0, \frac{2}{3})$ for every $B \in \mathcal{B}_0$,
- (5) Cl $B \subset I^{n-1} \times (\frac{1}{3}, 1]$ for every $B \in \mathcal{B}_1$, and
- (6) $|\mathcal{B}_{i}| = \omega$ for each i = 0, 1.

By (6), $[\operatorname{Bd} \mathcal{B}_i]^{m+1}$ is countable; therefore, we enumerate it as $[\operatorname{Bd} \mathcal{B}_i]^{m+1} = \{\mathcal{F}_{ij}:$ $j \in \mathbb{N}$. Let us see $F_{ij} = \bigcap \mathcal{F}_{ij}$, and let

$$E_{ik} = \bigcup \{F_{ij} : j \le k\} - \partial I^n$$

for i=0,1 and $k\in\mathbb{N}$. Then, by (3), we have $E_{0k}\cap E_{1k}\subset M_0\cap M_1=\emptyset$. Thus E_{0k} and E_{1k} are disjoint closed subsets of $(0,1)^n$, therefore we can take disjoint open subsets U_{0k} and U_{1k} in $(0,1)^n$ such that

- (7) $E_{ik} \subset U_{ik}$ for each i = 0, 1, (8) $U_{0k} \subset I^{n-1} \times [0, \frac{2}{3})$, and
- (9) $U_{1k} \subset I^{n-1} \times (\frac{1}{3}, 1]$.

Let us set

$$X_k = (I^n - U_{0k} \cup U_{1k}) \times \{1/k\}$$
 for every $k \in \mathbb{N}$, $X_0 = \partial I^n \times \{0\}$, and $X = \bigcup \{X_k : k = 0, 1, 2, \dots\}$.

We regard X as the subspace of the (n+1)-dimensional cube

$$I^{n+1} = \Pi\{I_j : 1 \le j \le n+1\},\,$$

where I_i is the copy of I.

4. $2m \le \operatorname{def} X \le 2m+1$. Note that $\operatorname{def} Y \le \operatorname{dim} Y$ for every space Y (see [5, Theorem 2.1.1]). Since $\operatorname{dim} X \le n = 2m+1$, we have $\operatorname{def} X \le 2m+1$. Assume that $\operatorname{def} X < 2m = n-1$. Let us set

$$J_j = (I_1 \times \cdots \times I_{j-1} \times \{0\} \times I_{j+1} \times \cdots \times I_{n+1}) \cap X,$$

and

$$K_i = (I_1 \times \cdots \times I_{i-1} \times \{1\} \times I_{i+1} \times \cdots \times I_{n+1}) \cap X$$

for every $j, 1 \leq j \leq n-1$. Then J_j and K_j are disjoint compact subsets of X. Thus, by Lemma 2.1, there is a partition T_j in X between J_j and K_j for every $j, 1 \leq j \leq n-1$, such that $\bigcap \{T_j : 1 \leq j \leq n-1\}$ is compact. Since $T_j \cap X_k$ is a partition in X_k between $J_j \cap X_k$ and $K_j \cap X_k$, and X_k is closed in $I^n \times \{1/k\}$, there is a partition T_{jk} in $I^n \times \{1/k\}$ between $J_j \cap X_k$ and $K_j \cap X_k$ such that $T_{jk} \cap X_k \subset T_j \cap X_k$ for each $j, 1 \leq j \leq n-1$, and each $k \in \mathbb{N}$. Let S_k be a continuum meeting $I^{n-1} \times \{1/6\} \times \{1/k\}$ and $I^{n-1} \times \{5/6\} \times \{1/k\}$ in $I^n \times \{1/k\}$ with $S_k \subset \bigcap \{T_{jk} : 1 \leq j \leq n-1\} \cap (I^{n-1} \times [1/6, 5/6] \times \{1/k\})$ (see [6, Lemma 5.2]). Since S_k is connected, by (8) and (9), we have $S_k \not\subset U_{0k} \cup U_{1k}$. Thus we have $S_k \cap X_k \neq \emptyset$ for every $k \in \mathbb{N}$. Obviously, $S_k \cap X_k \subset \bigcap \{T_{jk} : 1 \leq j \leq n-1\} \cap X_k \subset \bigcap \{T_j : 1 \leq j \leq n-1\}$ and $\{S_k \cap X_k : k \in \mathbb{N}\}$ is discrete in X. This contradicts the compactness of $\bigcap \{T_j : 1 \leq j \leq n-1\}$. Hence we have $\operatorname{def} X \geq n-1 = 2m$.

5. $1 \le \text{cmp } X \le m$. Note that cmp $X \le 0$ if and only if def $X \le 0$ (see [2, Main Theorem]). Since def $X \ge 2m > 0$, we have cmp $X \ge 1$.

We shall prove that cmp $X \leq m$. To prove this we only consider points of X_0 , because $\bigcup \{X_k : k \in \mathbb{N}\}$ is locally compact and open in X. First we shall show the following

Claim. Let $1 \leq l \leq m$. For every $\{B_1, \ldots, B_l\} \in [\mathcal{B}_i]^l$ and any $(k_1, \ldots, k_l) \in \mathbb{N}^l$ we have cmp $\cap \{ \operatorname{Bd}_X B'_j : 1 \leq j \leq l \} \leq m - l$, where $B'_j = (B_j \times [0, 1/k_j)) \cap X$ for each $j, 1 \leq j \leq l$.

 $Proof\ of\ Claim.$ We proceed by downward induction on l.

Step 1. l=m.

Let $Y = \bigcap \{ \operatorname{Bd}_X B_j' : 1 \leq j \leq m \}$, $y \in Y$, and U be a neighborhood of y in Y. We show that there is a neighborhood V of y in Y such that $V \subset U$ and $\operatorname{Bd}_Y V$ is compact. We may assume that $y \in X_0$. Then, by (1), (2), (4) and (5), there are $B_{m+1} \in \mathcal{B}_i$ and $k \in \mathbb{N}$ such that $y \in (B_{m+1} \times [0, 1/k)) \cap Y \subset U$. Since $\{B_1, \ldots, B_m, B_{m+1}\} \in [\mathcal{B}_i]^{m+1}$, $\bigcap \{\operatorname{Bd}_{I^n} B_j : 1 \leq j \leq m+1\} = F_{ip}$ for some $p \in \mathbb{N}$. Let $V = (B_{m+1} \times [0, 1/q)) \cap Y$, where $q = \max\{k, p\}$. Then V is a neighborhood of y in Y. Obviously, we have $V \subset U$. By (7), it is easy to see that

$$\operatorname{Bd}_Y V \subset \left(\bigcap \{\operatorname{Bd}_{I^n} B_j \colon 1 \leq j \leq m+1\} \cap \partial I^n\right) \times \{0, 1/(p+1), 1/(p+2), \dots\} \subset X.$$

Hence $\operatorname{Bd}_Y V$ is compact; therefore, we have $\operatorname{cmp} Y \leq 0 = m - l$.

Step 2. Let $1 \le l < m$ and suppose that the Claim is satisfied for l + 1.

Let $Y = \bigcap \{ \operatorname{Bd}_X B'_j : 1 \leq j \leq l \}$, $y \in Y$, and U be a neighborhood of y in Y. We may assume that $y \in X_0$. Take $B_{l+1} \in \mathcal{B}_i$ and $k \in \mathbb{N}$ such that $y \in B'_{l+1} = (B_{l+1} \times [0, 1/k)) \cap X$ and $B'_{l+1} \cap Y \subset U$. Then we have

$$\operatorname{Bd}_X(B'_{l+1}\cap Y)\subset\bigcap\{\operatorname{Bd}_XB'_j\colon 1\leq j\leq l+1\}.$$

By the induction hypothesis, we have

$$\operatorname{cmp} \operatorname{Bd}_{Y}(B'_{l+1} \cap Y) \le \operatorname{cmp} \bigcap \{ \operatorname{Bd}_{Y} B'_{j} : 1 \le j \le l+1 \}$$

 $\le m - (l+1) = m - l - 1.$

Hence we have cmp $Y \leq m - l$.

This completes the proof of the Claim.

By the Claim, in particular, $\operatorname{cmp} \operatorname{Bd}_X((B \times [0,1/k)) \cap X) \leq m-1$ for every $B \in \mathcal{B}_i$ and every $k \in \mathbb{N}$. Since $\{(B \times [0,1/k)) \cap X : B \in \mathcal{B}_0 \cup \mathcal{B}_1 \text{ and } k \in \mathbb{N}\}$ is an outer base for X_0 in X, we have $\operatorname{cmp} X \leq m$.

ADDED IN PROOF. By using the same techniques in §3, the author constructed a separable metrizable space X for which cmp $X \neq \text{def } X$ (see [2]).

REFERENCES

- 1. R. Engelking, Dimension theory, PWN, Warszawa, 1978.
- 2. J. de Groot and T. Nishiura, Inductive compactness as a generalization of semicompactnesss, Fund. Math. 58 (1966), 201-218.
- 3. J. van Mill, Review of R. Pol's paper [5], MR 85b:54041.
- 4. K. Nagami, Dimension theory, Academic Press, New York, 1970.
- R. Pol, A counterexample to J. de Groot's conjecture cmp = def, Bull. Acad. Polon. Sci. 30 (1982), 461-464.
- L. R. Rubin, R. M. Schori, and J. J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), 93-102.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, SAKURA-MURA, NIIHARI-GUN, IBARAKI, 305, JAPAN