A NONMOVABLE SPACE WITH MOVABLE COMPONENTS

J. DYDAK, J. SEGAL AND S. SPIEŻ

(Communicated by Dennis Burke)

ABSTRACT. In this paper we construct a nonmovable complete metric space of which every component is movable. This construction is based on P. Roy's famous example of a complete metric space X which has inductive dimension ind X=0 and covering dimension dim X=1.

Introduction. K. Borsuk [1, Theorem 7.1] proved that if every component of a compactum X is movable, then X is movable. In this paper we construct a nonmovable complete metric space every component of which is movable. The construction is based on P. Roy's famous example [5] of a complete metric space X which has inductive dimension ind X = 0 and covering dimension dim X = 1.

Actually for any metric space X with $\dim X = 1$ we construct in §I-IX a related solenoidal-type space Z and a morphism $\mathbf{p} = \{p_n\}$ from Z into inverse system of the dyadic solenoid. We show that $p_1 \colon Z \to S^1$ induces a nontrivial homomorphism on the first Čech cohomology $H^1(p) \colon H^1(S^1) \to H^1(Z)$ and that this implies Z is nonmovable. So in the case X is Roy's example we get that Z is nonmovable but each component is movable (each component is a point). The reader is referred to Spanier [6] as a general reference for the Hopf theorem.

We also present a second example in §XI which is a totally disconnected, non-movable space. This example is easier to construct but fails to have inductive dimension 0 and to be completely metrizable like the solenoidal Roy example mentioned above.

We were led to this question by a paper of M. A. Moron [4]. He showed that at least one of three results in shape theory for compact a did not carry over to the noncompact case. However, he could not ascertain which one failed in the noncompact case.

I. Construction of a solenoidal space. Let X be a metric space with the covering dimension dim X=1. There exists a closed subset $A\subset X$ and a map $f\colon (X,A)\to (I,\dot{I})$ that induces a nontrivial homomorphism $H^1(f)\colon H^1(I,\dot{I})\to H^1(X,A)$. Let $f_i\colon (X_i,A_i)\to (I,\dot{I}),\ i=0,1$, be two copies of f. We denote by Y the space obtained from the topological sum of X_0 and X_1 by the natural identification of $f_0^{-1}(1)$ and $f_1^{-1}(1)$. We assume that X_0 and X_1 , and so also $B_0=f_0^{-1}(0),\ B_1=f_1^{-1}(0)$ and $B=B_0\cup B_1$ are subsets of Y. One can prove that the map $g\colon (Y,B)\to (I,\dot{I})$, given by

$$g(y) = \begin{cases} \frac{1}{2} f_0(y) & \text{for } y \in X_0, \\ 1 - \frac{1}{2} f_1(y) & \text{for } y \in X_1, \end{cases}$$

Received by the editors January 28, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 54F43; Secondary 54F45. Key words and phrases. Movability, component, dimension, and shape.

induces a nontrivial homomorphism $H^1(g)\colon H^1(I,\dot{I})\to H^1(Y,B)$. Let $s\colon Y\to Y$ be the symmetry function that assigns to a point $x\in X_0$ the corresponding point $s(x)\in X_1$. There is a homeomorphism h defined on the Cantor set C onto itself such that the quotient space $C\times I/(h(c),0)\sim (c,1)$, where $c\in C$, is the dyadic solenoid. We define a quotient space

$$Z = C \times Y/(h(c), b) \sim (c, s(b)),$$

where $c \in C$ and $b \in B_0$. Let $h: C \times Y \to C \times Y$ be defined by h(c,y) = (h(c),y) for any $c \in C$ and $y \in Y$.

II. Now we will describe a morphism $\mathbf{p} = \{p_n\}$ from Z into the dyadic solenoid's inverse system $S^1 \stackrel{?}{\leftarrow} S^1 \stackrel{?}{\leftarrow} S^1 \leftarrow \cdots$ (see [3, p. 122]).

Let $\{C_n\}_{n=0}^{\infty}$ be the standard system of open coverings of the Cantor set C, i.e., $C_n = \{C_n^k | k = 1, \dots, 2^n\}$ consists of nonempty, open, pairwise disjoint subsets of C, each element of C_n (a copy of C) contains exactly two elements of C_{n+1} and $\{C_n\}_{n=0}^{\infty}$ is cofinal in the family of all open coverings of C. W may assume that the homomorphism h induces a cyclic permutation on the set C_n , $h(C_n^k) \in C_n$ for each $C_n^k \in C_n$, n > 0.

The set Z is the sum of 2^n copies of $C_n^k \times Y$. The (continuous) map $p_n \colon Z \to S^1$ restricted to $C_n^k \times Y$ is the composition of the projection $C_n^k \times Y \to Y$, the map $g \colon Y \to I$ and an inclusion $i_k \colon I \to S^1$ (2^n segments $i_k(I)$ have disjoint interiors). We may assume that for each n the following diagram commutes:

$$\begin{array}{ccccc}
& Z & & & & \\
& p_n & & & & & \\
& \swarrow & & & & & \\
S^1 & & \stackrel{2}{\leftarrow} & & S^1
\end{array}$$

III. We will prove that $p=p_1\colon Z\to S^1$ induces a nontrivial homomorphism $H^1(p)\colon H^1(S^1)\to H^1(Z)$. Let $Z=Z_1\cup Z_2$, where Z_i is the image of $C_1^i\times Y$, where $C_1^i\in \mathcal{C}_1$, under the projection $C\times Y\to Z$. Let T,T_0 , and T_1 be the images of $C\times B$, $C_1^1\times B_0$, and $C_1^1\times B_1$, respectively, under this projection. So $T=Z_1\cap Z_2$. The map $p\colon Z\to S^1$ maps Z_i onto a segment $I_i\subset S^1$. The intersection $I_1\cap I_2$ is S^0 (a two-point set). Let us consider the following diagram:

$$H^{0}(T) \xrightarrow{\partial^{\bullet}} H^{1}(Z,T) \xrightarrow{\bullet} \stackrel{j^{\bullet}}{\longrightarrow} H^{1}(Z) \xrightarrow{\cdots} \cdots$$

$$\uparrow^{H^{0}(p)} \qquad \uparrow^{H^{1}(p)} \qquad \uparrow^{H^{1}(p)} \qquad \qquad \uparrow^{H^{1}(p)} \cdots$$

$$H^{0}(S^{0}) \xrightarrow{\partial^{\bullet}} H^{1}(S^{1},S^{0}) \xrightarrow{j^{\bullet}} H^{1}(S^{1}) \xrightarrow{\cdots} \cdots$$

induced by the map p. By the Mayer-Vietoris sequence we can identify $H^1(Z,T)$ with $H^1(Z_1,T) \oplus H^1(Z_2,T)$ and $H^1(S^1,S^0)$ with $H^1(I_1,S^0) \oplus H^1(I_2,S^0)$ (the isomorphisms are induced by inclusions). Then $H^1(p): H^1(S^1,S^0) \to H^1(Z,T)$ we can identify with $H^1(p \mid Z_1) \oplus H^1(p \mid Z_2)$, where $H^1(p \mid Z_i): H^1(I_i,S_0) \to H^1(Z_iT)$. Let α be the image of the generator of $H^1(I_1,S^0)$. To prove that $H^1(p): H^1(S^1) \to H^1(Z)$ is nontrivial, it is enough to prove that $f^*(a)$ is nontrivial. Assume that $f^*(a) = 0$. Then $f^*(a) = 0$. Then $f^*(a) = 0$. Then $f^*(a) = 0$ is nontrivial.

IV.

REMARK. Let $a \in H^1(Z,T)$. Assume that $a = \partial^*(d)$ for some $d \in H^0(T)$, where $\partial^* : H^0(T) \to H^1(Z,T)$ is the coboundary operator. Then there exists a covering $\mathcal V$ of Z such that

(i) $d = j_{\mathcal{V}}^*(d_{\mathcal{V}})$ for some $d_{\mathcal{V}} \in H^0(N(\mathcal{V} \mid T))$,

(ii) $a = j_{\mathcal{V}}^*(a_{\mathcal{V}})$ for some $a_{\mathcal{V}} \in H^1(N(\mathcal{V}), N(\mathcal{V} \mid T))$,

(iii) $\partial^*(d_{\mathcal{V}}) = a_{\mathcal{V}}$,

where

$$\begin{array}{ccc} H^0(N(\mathcal{V}\mid T)) & \xrightarrow{\partial^*} & H^1(N(\mathcal{V}), N(\mathcal{V}\mid T)) \\ & & & \downarrow j_{\mathcal{V}}^* & & \downarrow j_{\mathcal{V}}^* \\ & & & & H^0(T) & \xrightarrow{\partial^*} & H^1(Z, T) \end{array}$$

and the ∂^* are coboundary operators and the j_{ν}^* are natural projections.

V. System of neighborhoods. By $\{\mathcal{U}_{\alpha}\}_{{\alpha}\in\Lambda}$ we denote the system of all open symmetric (i.e., $s(U)\in\mathcal{U}_{\alpha}$ if $U\in\mathcal{U}_{\alpha}$) coverings of Y of order 1. For any covering \mathcal{U}_{α} of Y we define a system $\{\mathcal{V}_{\varphi}\}_{{\varphi}\in\Phi_{\alpha}}$ by

$$\mathcal{V}_{\varphi} = \{ C' \times U | U \in \mathcal{U}_{\alpha} \text{ and } C' \in \mathcal{C}_{\varphi(U)} \},$$

where Φ_{α} is the set of all symmetric functions φ (i.e., $\varphi(U) = \varphi(s(U))$) from \mathcal{U}_{α} into the set of all nonnegative integers. Let $\Phi = \bigcup \{\Phi_{\alpha} \mid \alpha \in \Lambda\}$. The system $\{\mathcal{U}_{\alpha}\}_{\alpha \in \Lambda}$ is cofinal in the system of all open coverings of Y and the system $\{\mathcal{V}_{\varphi}\}_{\varphi \in \Phi}$ is cofinal in the system of all open coverings of $C \times Y$.

Now, let A be any closed subset of Y. Suppose that the nerve $N(\mathcal{V})$ is a component of the nerve $N(\mathcal{V}_{\varphi}|C\times A)$, $\varphi\in\Phi_{\alpha}$. Then there is a k an $C^{0}\in\mathcal{C}_{k}$ and a subfamily $\mathcal{U}^{0}\subset\mathcal{U}_{\alpha}$ such that

$$\mathcal{V} = \{C' \times U | U \in \mathcal{U}^0, C' \in \mathcal{C}_{\varphi(U)}, \text{ and } C' \subset C^0\},\$$

so $\bigcup \mathcal{V} = \bigcup \mathcal{U}^0 \times C^0$. Let us observe that

$$h(\mathcal{V}) = \{C' \times U | U \in \mathcal{U}^0, C' \in \mathcal{C}_{\varphi(U)}, \text{ and } C' \subset h(C^0)\},$$

and $N(h(\mathcal{V}))$ is a component of $N(\mathcal{V}_{\varphi}|C \times A)$ which we denote by $hN(\mathcal{V})$.

VI. Lemma. Let \mathcal{V}_{φ} be a covering of $C \times Y$, $\varphi \in \Phi_{\alpha}$, induced by \mathcal{U}_{α} (see §V). Symmetric components (with respect to s) of the simplicial complex

$$L = N(\mathcal{V}_{\varphi}) - N(\mathcal{V}_{\varphi}|C \times B)$$

"join" $C \times B_0$ and $C \times B_1$. By Σ_i , i = 0, 1, we denote the set of all 1-simplexes that have a vertex in $N(\mathcal{V}_{\varphi}|C \times B_i)$ and that are in symmetric components of L. We can consider the group G_i of all functions from Σ_i into the integer group as a subgroup (by natural embedding) of $H^1(N(\mathcal{V}_{\varphi}), N(\mathcal{V}_{\varphi}|C \times B))$.

Let us denote by Δ_i , i=0,1, the set of all components of $N(\mathcal{V}_{\varphi}|C\times B_i)$. We can consider the group $H^0(N(\mathcal{V}_{\varphi}|C\times B_i))$ as the group of all functions from Δ_i into the integer group. By Δ_i' we denote the set of components of $N(\mathcal{V}_{\varphi}|C\times B_i)$ that contains a vertex of some simplex of Σ_i . Let $\Delta_i''=\Delta_i-\Delta_i'$. The group of all functions from Δ_i' (resp. Δ_i'') into the integer group we denote by H_i' (resp. H_i''). Let us observe that $\partial^*(H^0(N(\mathcal{V}_{\alpha}|C\times B_i)))=\partial^*(H_i')\subset G_i$ and $\partial\omega^*(H_i'')=0$, where

$$\partial^* : H^0(N(\mathcal{V}_{\varphi}|C \times B)) \to H^1(N(\mathcal{V}_{\varphi}), N(\mathcal{V}_{\varphi}|C \times B))$$

is the coboundary operator. The group $H^0(N(\mathcal{V}_{\omega}|C\times B))$ is the direct sum

$$H^0(N(\mathcal{V}_{\varphi}|C\times B_0))\oplus H^0(N(\mathcal{V}_{\varphi}|C\times B_1)).$$

The map $s: C \times Y \to C \times Y$, given by s(c,y) = (c,s(y)), induces a symmetric isomorphism

$$H^0(s): H^0(N(\mathcal{V}_{\omega}|C \times B)) \to H^0(N(\mathcal{V}_{\omega}|C \times B))$$

in the following way. Any element $d \in H^0(N(\mathcal{V}_\alpha|C \times B))$ is represented by a function d from $\Delta = \Delta_0 \cup \Delta_1$ into the integer group. The element $H^0(s)(d)$ can be represented as a map from Δ into the integer group such that $H^0(s)(d)(K) = d(s(K))$ for any component K of $N(\mathcal{V}_{\varphi}|C \times B)$. We have

$$H^0(s)(H^0(N(\mathcal{V}_{\varphi}|C\times B_0))) = H^0(N(\mathcal{V}_{\varphi}|C\times B_1)).$$

Now, let $d = d_0 + d_1$ be an element of $H^0(N(\mathcal{V}_{\varphi}|C \times B))$, where

$$d_i \in H^0(N(\mathcal{V}_{\varphi}|C \times B_i)).$$

Each d_i is represented by a map d_i from Δ_i into the integer group. Suppose that $\delta^*(d) = 0$. Let $\partial_0 \in \Delta_0'$ and $\partial_1 = s(\partial_0) \in \Delta_1'$. Then there is a (symmetric) simplicial path in $N(\mathcal{V}_{\varphi})$ with end points $V_0 \in \partial_0$ and $V_1 = s(V_0) \in \partial_1$ such that all other simplexes of this path are in L. Since $\partial^*(d) = 0$ it follows that $\partial^*(d_0)$ and $\partial^*(d_1)$ take opposite values on the first and the last simplex of this path. So d_0 and d_1 take the same value on V_0 and V_1 , respectively, and so on ∂_0 and ∂_1 , respectively. So we obtain the following

LEMMA. Let $d = d_0 + d_1$, where $d_i \in H^0(N(\mathcal{V}_{\varphi}|C \times B_i), i = 0, 1$. If $\partial^*(d) = 0$, then $d_0(K) = d_1(s(K))$ for every $K \in \Delta'_0$ (and so for every $K \in \Delta'_1$).

VII. Notation. We consider (Z,T) as the sum $(Z_1,T) \cup (Z_2,T)$ of two copies of $(C \times Y, C \times B)$, where $Z_1 \cap Z_2 = T$. Let $j_1 : (C \times Y, C \times B) \to (Z,T)$ and $j_2 : (C \times Y, C \times B) \to (Z,T)$ be corresponding embeddings, so

$$j_i(C \times Y, C \times B) = (Z_i, T)$$
 for $i = 1, 2$.

We may assume that

$$j_1|C \times B_1 = j_2|C \times B_1$$
 and $j_1|C \times B_0 = j_2h|C \times B_0$

where $h: C \times Y \to C \times Y$ is the homeomorphism given by h(c,y) = (h(c),y) for any $c \in C$ and $y \in Y$. Let \mathcal{V}_{φ} be the covering of $C \times Y$ described in V. By $\widetilde{\mathcal{V}}_{\varphi}$ we denote the open covering of Z that satisfies two conditions:

$$j_1(\mathcal{V}_{\varphi}) = \widetilde{\mathcal{V}}_{\varphi} \cap Z_1 \quad \text{and} \quad j_2(\mathcal{V}_{\varphi}) = \widetilde{\mathcal{V}}_{\varphi} \cap Z_2.$$

Let us observe that the embeddings j_1 and j_2 induce isomorphisms of complexes

$$j_i: (N(\mathcal{V}_{\varnothing}), N(\mathcal{V}_{\varnothing}|C \times B) \to (N(\widetilde{\mathcal{V}}_{\varnothing}|Z_i), N(\widetilde{\mathcal{V}}_{\varnothing}|T)) \text{ for } i = 1, 2.$$

The system of all such coverings $\{\widetilde{\mathcal{V}}_{\varphi}\}_{\alpha\in\Phi}$ of Z is cofinal in the system of all open coverings of Z.

VIII. We have assumed (§III) that $a \in \partial^*(H^0(T))$ i.e. $a = \partial^*(d)$ for some $d \in H^0(T)$. By the Remark (§IV) there exists a covering $\widetilde{\mathcal{V}}_{\varphi}$ of Z that satisfies the conditions (i), (ii), (iii). We have

$$\begin{split} H^0(N(\widetilde{\mathcal{V}}_{\varphi}|T)) & \xrightarrow{\partial^*} H^1(N(\widetilde{\mathcal{V}}_{\varphi}), N(\widetilde{\mathcal{V}}_{\varphi}|T)) \\ & = H^1(N(\widetilde{\mathcal{V}}_{\varphi}|Z_1), N(\widetilde{\mathcal{V}}_{\varphi}|T)) \oplus H^1(N(\widetilde{\mathcal{V}}_{\varphi}|Z_2), N(\widetilde{\mathcal{V}}_{\varphi}|T)). \end{split}$$

So there exists $a_{\nu} \in H^1(N(\widetilde{\mathcal{V}}_{\varphi}), N(\widetilde{\mathcal{V}}_{\varphi}|T)$ and $d_{\nu} \in H^0(N(\widetilde{\mathcal{V}}_{\varphi}|T))$ such that a is the image of a_{ν} under j_{ν}^* and $a_{\nu} = \partial^*(d_{\nu})$. We may assume (see §III) that

$$a_{\nu} \in H^1(N(\widetilde{\mathcal{V}}_{\varphi}|Z_1), N(\widetilde{\mathcal{V}}_{\varphi}|T)) \subset H^1(N(\widetilde{\mathcal{V}}_{\varphi}), N(\widetilde{\mathcal{V}}_{\varphi}|T)).$$

The embeddings j_1 and j_2 induce isomorphisms

$$H^1(j_i): H^1(N(\widetilde{\mathcal{V}}_{\varphi}|Z_i), N(\widetilde{\mathcal{V}}_{\varphi}|T)) \to H^1(N(\mathcal{V}_{\varphi}), N(\mathcal{V}_{\varphi}|C \times B))$$
 for $i = 1, 2$, and isomorphisms

$$H^0(j_i): H^0(N(\widetilde{\mathcal{V}}_{\varphi}|T)) \to H^0(N(\mathcal{V}_{\varphi}|C \times B))$$
 for $i = 1, 2$.

We know that

$$H^0(N(\widetilde{\mathcal{V}}_{\varphi}|T)) = H^0(N(\widetilde{\mathcal{V}}_{\varphi}|T_0)) \oplus H^0(N(\widetilde{\mathcal{V}}_{\varphi}|T_1))$$

and

$$H^0(N(\mathcal{V}_{\varphi}|C\times B)) = H^0(N(\mathcal{V}_{\varphi}|C\times B_0)) \oplus H^0(N(\mathcal{V}_{\varphi}|C\times B_1))$$

and that $H^0(j_i)$ maps $H^0(N(\widetilde{\mathcal{V}}_{\varphi}|T_0))$ onto $H^0(N(\mathcal{V}_{\varphi}|C\times B_0))$ and $H^0(N(\widetilde{\mathcal{V}}_{\varphi}|T_1))$ onto $H^0(N(\mathcal{V}_{\varphi}|C\times B_1))$.

Let us observe that

$$H^{0}(j_{1})|H^{0}(N(\widetilde{\mathcal{V}}_{\varphi}|T_{1})) = H^{0}(j_{2})|H^{0}(N(\widetilde{\mathcal{V}}_{\varphi}|T_{1}))$$

and

$$H^{0}(j_{1})|H^{0}(N(\widetilde{\mathcal{V}}_{\varphi}|T_{0})) = H^{0}(h)H^{0}(j_{2})|H^{0}(N(\widetilde{\mathcal{V}}_{\varphi}|T_{0})),$$

where $H^0(h)$ is an automorphism on $H^0(N(\mathcal{V}_{\varphi}|C\times B_0))$ induced by $h\colon C\times Y\to C\times Y$.

Let $d_{\nu} = d_{\nu,0} + d_{\nu,1}$ where $d_{\nu,i} \in H^0(N(\widetilde{\mathcal{V}}_{\varphi}|T_i))$, for i = 0, 1. Then

$$H^{0}(j_{1})(d_{\nu,0}) = H^{0}(h)H^{0}(j_{2})(d_{\nu,0}) = H^{0}(h)(d_{0}),$$

where $d_0 = H^0(j_2)(d_{\nu,0})$ and

$$H^0(j_1)(d_{\nu,1}) = H^0(j_2)(d_{\nu,1}) = d_1.$$

We can assume (see §III) that

$$H^1(j_1)(a_{\nu}) \in G_0 \subset H^1(N(\mathcal{V}_{\varphi}), N(\mathcal{V}_{\varphi}|C \times B))$$

may be represented as a function that takes the value 1 on each 1-simplex of Σ_0 and that

$$H^1(j_2)(a_{\nu}) \in H^1(N(\mathcal{V}_{\omega}), N(\mathcal{V}_{\omega}|C \times B))$$

is trivial. Let us denote by d^1 an element of $H^0(N(\mathcal{V}_{\varphi}|C \times B_0))$ that takes the value 1 on each component K of $N(\mathcal{V}_{\varphi}|C \times B_0)$.

We have

$$\partial^*(H^0(j_1)(d_{\nu})) = H^1(j_1)(a_{\nu}) = \partial^*(d^1)$$

$$\partial^* (H^0(j_2)(d_{\nu})) = H^1(j_2)(a_{\nu}) = 0.$$

It follows that

$$\partial^*(H^0(h)(d_0) + d_1) = \partial^*(d^1)$$
 and $\partial^*(d_0 + d_1) = 0$.

by the Lemma in §VI,

$$(H^0(h)(d_0) - d^1)(K) = d_1(sK)$$
 and $d_0(K) = d_1(sK)$

for every $K \in \Delta'_0$. So

(*)
$$d_0(K) = (H^0(h)(d_0) - d^1)(K) = d_0(K) - 1$$
 for every $K \in \Delta_0'$.

By §V there is a sequence in Δ'_0 :

$$(**) K_1, K_2, \ldots, K_{2^k}$$

such that $K_n = h(K_{n-1})$ for each $n = 2, ..., 2^{2k}$ and $K_1 = h(K_{2k})$. The equality (*) considered on the components (**) gives a contradiction. Thus a_{ν} is not in $\partial^*(H^0(\mathcal{V}_{\varphi}|T))$ and so a is not in $\partial^*(H^0(T))$. It follows that $H^1(p): H^1(S^1) \to$ $H^1(Z)$ is not trivial.

IX. Let D be the dyadic solenoid, i.e., $D = \operatorname{inv} \lim(S^1 \stackrel{2}{\leftarrow} S^1 \stackrel{2}{\leftarrow} \cdots)$ and let $\pi \colon D \to S^1$ be the projection onto the first circle.

LEMMA. Let g be a map from a topological space Z into D. If $f = \pi \cdot g \colon Z \to S^1$ is essential then, Z is not movable.

PROOF. Since $\pi: D \to S^1$ is divisible by 2^n for all n in the group $[D, S^1]$, f is divisible by 2^n for all n in the group $[Z, S^1]$.

Now let $\{Z_{\lambda}, r_{\lambda,\mu}\}$ be the Čech system of Z and let $f_{\lambda}: Z_{\lambda} \to S^1$ be a map such that $f \approx f_{\lambda} \pi_{\lambda}$, $\pi_{\lambda} : Z \to Z_{\lambda}$ being the projection. Suppose Z is movable, so there is $\mu > \lambda$ such that for arbitrary $\gamma > \mu$ there is a map $h: Z_{\mu} \to Z_{\gamma}$ with $r_{\lambda \gamma} \cdot h \approx r_{\lambda \mu}$.

Observe that $[Z_{\mu}, S^1]$ does not contain nontrivial elements divisible by all the powers of 2. This is so because such a map induces the trivial homomorphism of fundamental groups. Let m be an integer such that $[f_{\lambda} \cdot r_{\lambda \mu}]$ is not divisible by 2^m . Since $[Z, S^1] = \dim[Z_{\gamma}, S^1]$, there is $\gamma > \mu$ with $[f_{\lambda} \cdot r_{\lambda \gamma}]$ divisible by 2^m . Then $[f_{\lambda} \cdot r_{\lambda \gamma} \cdot h] = [f_{\lambda} \cdot r_{\lambda \mu}]$ is divisible by 2^m , a contradiction.

REMARK. In the previous Lemma, D can be replaced by any nontrivial solenoid.

X. Solenoidal Roy's example. In [5], P. Roy has given an example of a metric space X with the covering dimension $\dim X = 1$ and with the small inductive dimension ind X=0. Our solenoidal space Z obtained from the Roy's examples is not movable and it is easy to see that ind Z=0. Thus we have the following

THEOREM. There exists a nonmovable 1-dimensional complete metric space Z, with ind Z=0.

COROLLARY. There exists a nonmovable space Z with movable components (each components is a point).

REMARK. If the covering dimension of a space is 0, then it is movable. (See [2].)

and

XI. Second example. Let D be the dyadic solenoid, i.e.

$$D = \operatorname{inv} \lim (S^1 \stackrel{2}{\leftarrow} S^1 \stackrel{2}{\leftarrow} \cdots).$$

Let $\pi: D \to S^1$ be the projection onto the first circle. The crucial property of π we are going to use is that π is essential (not homotopic to a constant map).

Consider the family **A** of all open subsets U of $D \times C$, C being the Cantor set, such that the composition $U \to D \times C \to D \to S^1$ is inessential, where $U \to D \times C$ is the inclusion map, $D \times C \to D$ is the projection and $D \to S^1$ is π . Choose a bijection $\alpha \colon C \to \mathbf{A}$ between **A** and the Cantor set C. Such a bijection exists because given a point (d,c) in $D\times C$ there is $\varepsilon>0$ such that the ball $B((d,c),\varepsilon)$ centered at (d,c)and of radius ε belongs to **A**. Hence $B((d,c),\delta) \in \mathbf{A}$ for all $\delta < \varepsilon$, and since D is connected $B((d,c),\delta) \neq B((d,c),\mu)$ for $\delta \neq \mu$ sufficiently small. Given $c \in C$, the composition $D \times \{c\} \to D \times C \to D \to S^1$ is essential. Therefore, $D \times \{c\} - \alpha(c) \neq \emptyset$ and we can choose $\beta(c) \in D \times \{c\} - \alpha(c)$. Let $Y = \{\beta(c) : c \in C\} \subset D \times C$. Observe that $Y \to D \times C \to C$ is a bijection $(D \times C \to C)$ being the projection, so Y is totally disconnected. Suppose $\pi \cdot p|Y:Y\to S^1$ is inessential, where $p\colon D\times C\to D$ is the projection. Then there is a map $H: D \times C \times \{0,1\} \cup Y \times [0,1] \to S^1$ such that $H|D\times C\times\{0\}$ is $\pi\cdot p$ and $H|D\times C\times\{1\}$ is a constant map. By [7, p. 107], H is homotopic to a map G extendable over a neighborhood V of $D \times C \times \{0,1\} \cup Y \times [0,1]$ in $D \times C \times [0,1]$. Choose a neighborhood U of Y in $D \times C$ such that $U \times [0,1] \subset V$. Then $\pi \cdot p|U$ is inessential, so $U = \alpha(c)$ for some $c \in C$. This leads to a contradiction because $Y \cap (D \times \{c\} - \alpha(c)) \neq \emptyset$, so it is impossible for Y to be contained in U. Thus $f = \pi \cdot p|Y: Y \to S^1$ is essential. By §IX, Y is nonmovable.

BIBLIOGRAPHY

- 1. K. Borsuk, Theory of shape, Monografie Mat., vol. 50, PWN, Warszawa, 1975.
- G. Kozlowski and J. Segal, On the shape of 0-dimensional paracompacta, Fund. Math. 83 (1974), 151-154.
- 3. S. Mardešić and J. Segal, Shape theory, North-Holland, Amsterdam, 1982.
- 4. M. A. Moron, Prabir Roy's space Δ as a counterexample in shape theory, Proc. Amer. Math. Soc. (to appear).
- P. Roy, Failure of equivalence of dimension concepts for metric spaces, Bull. Amer. Math. Soc. 68 (1962), 609-613.
- 6. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
- J. J. Walsh, Dimension, cohomological dimension, and cell-like mappings, Shape Theory and Geometric Topology, (Proc., Dubrovnik, 1981), Lecture Notes in Math., vol. 870, Springer-Verlag, Berlin and New York, 1981, pp. 105-118.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37996

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195

INSTITUTE OF MATHEMATICS PAN, SNIADECKICH 8, WARSAW, POLAND