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ABSTRACT. We connect two nonlinear irreducible character of a finite group

G if their degrees have a common prime divisor. In this paper we show that

the corresponding graph has at most three connected components.

1. Introduction and the main result. Let G be a finite group and let

Irr(G) denote the set of the irreducible complex characters of G. We define a graph

T = r(G) in the following way.

The vertices of Y are represented by the nonlinear irreducible characters of G.

We connect two vertices x and tp of Irr(G) if the degrees x(l) and <p(l) have a

common prime divisor. Note here that G is abelian if and only if G is attached to

the empty graph.

If n(T) denotes the number of the connected components of T, we have the

following main result.

THEOREM.   n(r(G)) < 3 for any group G.

Unfortunately, the proof of the theorem relies on the classification of all finite sim-

ple groups. Let us here mention that for a solvable group we even have n(r(G)) < 2.

This was proved by the first author in [9, Proposition 2]. Finally, these bounds are

best possible; for instance, take PSL(2,2a) (a > 2) in case of a nonsolvable, and

the symmetric group 54 in case of a solvable group.

As an application we obtain the following result which was proved by the first

author in [8] under the hypothesis of a special case of Brauer's height zero conjecture

and in full generality by the third author [17].

COROLLARY. Suppose that G is a nonsolvable group and that the degrees of all

irreducible complex characters of G are powers of primes. Then G = S x A where

A is abelian and S G {A5, SL(2,8)}.

PROOF. By [8, Hilfssätze 3 und 5], we may assume that G is simple. Further-

more, since the character degrees are powers of primes, a connected component T¿

of T = r(G) contains only characters \ the degree of which is a power of a fixed

prime p%. By the theorem n(F) < 3, and by [8, Einleitung] we may even assume

that 7i(r) = 3. Now Michler's result [11, 5.4] implies that G is a {pi,P2,P3}-group

and Satz 2 of [8] yields G S A5 or G SS SL(2,8).
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2. Reduction to simple groups. In order to prove the theorem, we reduce

the problem to simple groups and check the degree configurations in the known list.

Since many of the simple groups tend to have a connected graph, the following key

proposition leads in most cases to a better bound than 3.

PROPOSITION.   Suppose that G is a nonsolvable group.  Then

n(T(G)) < m^{n(T(E))}

where E runs through the set of the simple nonabelian composition factors of G.

PROOF. Let N be a maximal normal subgroup of G and let

rc = max{n(r(£))}

where E runs through the set of simple nonabelian composition factors of G. First

we deal with the case that G/N is simple and nonabelian. Clearly, there exist con-

nected components T\,...,Ta of T — T(G) such that s < k and {p>\p G Irr(G), N C

Kernip, p(l) ^ 1} Ç Ti U • • • U Ts- Suppose n(r) > k and choose a component

of T, say Tk+i which is different from Tz (i = l,...,s). Let x e T/t-fi- As

(x(l),p(l)) - 1 for all <p e 1tt(G/N), we obtain (X(1),\G/N\) = 1 by Michler's
Theorem 5.4 of [11]. Thus xjv G lrv(N) and Gallagher's theorem [6, 6.17] yields

Xf e Irr(G) for all <p e lrr(G/N). However, xf e Tk+i, which forces ip G Pfc+i
for all ip with <p(l) ^ 1 contrary to the choice of r^+i. Thus it remains to deal

with the case that G/N is of prime order p. By the inductive hypothesis we have

n(T(N)) < k. Furthermore, if there exists x G Irr(TV) with p|x(l)i then we are

done. Thus we may assume that p does not divide the degree of any irreducible

character of N. Applying [11, 5.4] again we obtain that N has a normal abelian Sy-

low p-subgroup P. Now suppose that there exists a nonlinear character ip G Irr(TV)

with inertial group IG(ip) — N. Then ipG G Irr(G) with p\ipG(l) and therefore

n(r(G)) < n(T(N)) < k. Thus we are left with the case that in particular all

nonlinear irreducible characters of N/P are fixed by G/P. Suppose Pq is a Sylow

p-subgroup of G and [P0/P,N/P] ¿ 1. Then a result of Isaacs ([7]; cf. [10]) im-

plies that N/P is solvable, a contradiction to the hypothesis of the Proposition.

Thus we may assume that Pq/P acts trivially on N/P. Therefore Pc, < G. Now

start the procedure again with Nç, maximal normal in G and Pq < Nr>. If G/N0

is nonabelian, the same argument as above works. In case \G/Nr,\ = q is prime,

we obtain again that a Sylow g-subgroup Qç, of G is normal. Continuing this way,

we finally end up with a solvable group G, which contradicts the hypothesis of the

Proposition.

3. Sporadic and alternating groups. To complete the proof of the Theorem

we have to calculate n(r(G)) for all finite nonabelian simple groups.

By checking the character degrees of the 26 sporadic groups given in [3], we

obtain

PROPOSITION. If G is one of the sporadic simple groups, then T(G) is con-

nected.

For the rest of this section, let G be one of the simple alternating groups An. If

G = A5 = SL(2,4), the character degrees are 1, 3, 4, and 5, so that n(r(A5)) = 3.
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For G = A6 = PSL(2.9), the degrees are 1, 5, 8, 9 and 10, hence n(P(A6)) = 2.

Finally, if G = Ag, the graph is connected since we have character degrees 1, 7.

20, 21, 28, 35, 45, 56, 64 and 70. All the other alternating simple groups have a

connected graph. We even obtain

PROPOSITION. Ifn = 7 or n > 9, then for any odd prime p < n, the alternating

group A„ has an irreducible character x such that 2p|x(l)-

PROOF. It is sufficient to show that there either exists an irreducible character

X of Sn which is not selfadjoint such that 2p|x(l) or there exists an irreducible

character x of Sn such that 4p|x(l)-

The irreducible characters of Sn are indexed by partitions and we consider the

partition (n — s — r, s + 1, lr_I ), which corresponds to the following Young tableau.

n — s n — s — r    n — s — r — 1 • • • n — 2» — r + 1    n — 2s — r — 1 ■ • ■ 1

r + s s s — 1        ■■• 1

r - 1 s_„-'

r { r — 2 s

2

v      1

Such a partition of course exists, if r > 1, s > 0 and r + 2s •+-1 < n. Furthermore,

the diagram is selfadjoint exactly in the following cases

(i) s = 0 and n = 2r+ I,

(ii) s = 1 and n = 2r + 2.

Now, if x G Irr(S„) is the character corresponding to the partition (n — s — r,

s + 1, lr_1), we have

n\(n-2s-r)
x(i) -

s\(r — l)!(n — s — r)\(r + s)(n — s)

n - s — 1 \ n-2s-r
■(:)('

r - 1     /      r + s

Case 1. Let n be odd.

If we take in this situation r to be odd and s to be even, then 2|x(l)-

(i) Furthermore, let n ^ 0, — 1 (modp).

We put r := p — 2 and s :— 0. Then r + 2s + 1 = p — 1 < n and the partition is

well defined. This specification yields

,'n - 1 \ n - (p- 2)      (n - 1
x(i) =

p-3,/      p-2 \p-2

and p|x(l), as n ^ 0, —1 (modp). Now, if n ^ 2p —3, x is lic,t selfadjoint and we are

done. For n = 2p — 3, we take r := 3 and s := p — 5. Then r -I- 2s + 1 = 2p — 6 < n

and

x(i) =_^-3>!'4 _.
X^ '      (p-5)!-2-(p-l)!(p-2)(p+2)'

hence 2p|x(l)- If p > 7, x is not selfadjoint, and if p = 5, we have x(l) = 20.
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(ii) Let n = O   (mod p).

If p t¿ 3, we choose r := 1 and s := 2. Then r + 2s+l=6<n and

n!(n-5)

2-{n-3)!-3-(n-2)'

so that 2p|x(l)- Here x is not selfadjoint. If p == 3, we put r :— 3 and s := 2. Then

r + 2s + 1 = 8 < n,

x(l) =_^-7)_
Xl ;      2-2-(n-5)!-5-(n-2)'

2p|x(l) and x is not selfadjoint.

(iii) Let n = — 1   (mod p).

If n ^ 2p — 1 and n ^ 4p — 1, we choose r := 2p — 1 and s := 0.   We obtain

r + 2s + l=2p<n and

,   n-l\n + l-2p
x(i) - 2p - 2 J     2p - 1    '

Thus 2p|x(l) and x is not selfadjoint, as n ^ Ap — 1. So suppose that n = 2p - 1.

For p = 5, we get n = 9 and we consider the partition (5,2,2). The corresponding

character has degree 120. For p > 7, we take r := p and s := 2. Then r + 2s -f 1 =•

p + 5 < n and

vm = (2p-l)!(p-5)
X{ ]      2-(p-l)!(p-3)!(p+2)(2p-3)'

which means 2p|x(l)- We now have to assume that n = 4p— 1. If p = 3, we choose

r := 1 and s := 4. Then r + 2s + 1 = 10 < n and x(l) = 132 is divisible by 6. For

p > 5, we again take r := p and s := 2. So, we have r-f-2s+l=p-r-5<n and

(4p-l)!(3p-5)
X(l) =

2-(p-l)!(3p-3)!(p + 2)(4p-3)

from which we conclude that 2p|x(l)-

Case 2. Let n be even.

If we take now r to be even and s to be odd, we also have 2|x(l)-

(i) Suppose, that n ^ 1, — 2   (mod p).

If p ^ 3, we take r := p — 3 and s := 1. Then r + 2s + l=p<n and

t n-2\ n(n-p+l)

P-4J        p-2

It follows 4p|x(l), as n jé 1, —2   (mod p).  For p = 3, let r := 6 and s := 1.  We

obtain r + 2s+l = 9<n, because n^8. Furthermore

xii)-(--»)sfcfa.
hence 4p|x(l)-

(ii) We now assume that n = 1   (mod p).

If n > 3p + 1, we take r := 2 and s := p. Thus r + 2s + 1 < n.

,'n\, (n-p-l)(n-2p-2)

V P + 2
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now implies 2p|x(l)- Thus, let n — p + 1.  (Note that n is even.) Then p > 7 and

for r := 2, s := 3, we obtain r + 2s + l=9<n and

'p+l\ (p-3)(p-7)X(l) =

which yields that 4p|x(l)-

(iii) Finally we have to consider n = — 2 (mod p). Furthermore, we may assume

that p > 3, because otherwise we are done due to (ii). If n > 4p — 2, we choose

r := 2p and s : = 1, so that r + 2s + 1 = 2p + 3 < n. Since

n - 2 \ n(n - 2p - 2)

2p- 1x(i) =
2p+l

we get 4p|x(l)- So let n = 2p — 2. Surely p / 5, since n / 8. For p = 7, we take

r := 1 and s := 2 and obtain x(l) = 154. If p > 7, we choose r := p — 1 and s := 3.

We get r + 2s + 1 = p + 6 < n and

x(i) =
2p-2

3

2p

P-

6\ p-7

p + 2'

Thus 2p|x(l) and the proof is complete.

4. Simple groups of Lie type. In this section we freely use the following

known facts (cf. [14 and 13, §11, §12]):

Let L be a finite simple group of Lie type. Then there exists a simple, simply

connected, linear algebraic group G and an endomorphism a of G such that (i)

GG/Z(Ga) = L or (ii) L is a proper subgroup of Lq = Ga/Z(Ga) = Ga which

occurs exactly in the following cases:

Ga — Lq \L0:L\ L = L'r

A6 = Ai(9)
2A2(3)

2F4(2)'

Ai(8)
Tits' simple group

B2(2)

G2(2)
2F4(2)

2G2(3)

For some of the groups, the main result has to be checked separately.

4.1  LEMMA.   n(T(L)) < 3 for each of the following simple groups:

A,(q) (q > 3), A2(q), 2A2(q) (q > 2), 2B2(22m+1) (m > 1),

3D4(q), G2(q) (q>2), 2G2(32m+1) (m > 1), 2F4(2)'.

PROOF. This can almost be done checking the known character tables.

Group Reference

Ai(q)
A2(q)
2A2(q)

2B2(22m+1)

3D4(q)

G2(q)
G2(3m)

2G2(32m+1)

2W

[1, Chapter XI, §5]

[12]

[12]
[1, Chapter XI, §5], if m> 1

[4]
[2], if 2.3 does not divide q

[5]
[16]
[3]
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Furthermore, the smallest Suzuki group 2B2(8) has character degrees 1, 26, 14,

65, 35, 91 (see [3]). Thus only the groups G2(q) in characteristic 2 are left. Let

L = G2(q), q = 2m with m > 1. By [15, §17], L has two maximal anisotropic tori

G2 and A2 of orders q2 — q + 1 and q2 + q + 1 respectively. Moreover, both tori

contain regular elements, hence characters in general position since G2 and A2 are

cyclic.

Thus we obtain two irreducible characters x and ip of L with degrees

x(l) = \L : Ga|a. = («.- 1)2(<? + 1) V + g + 1)

and

tf(l) = \L '■ A2\v = (q~ l)2(l + 1) V -9 + 1)

(see [11, Proposition 2.2]). Since |L| = q6(q - l)2(q + l)2(q2 +q + l)(q2 -q+1),

the assertion follows.

4.2 LEMMA. Suppose that L = Ga/Z(Ga) is a finite simple group of Lie type

defined over the field GF(q) where q = rm with r a prime. Furthermore assume

that the following two conditions hold.

(i) There exist two astable maximal tori, say Tl and T2 of G such that whenever

p is a prime divisor of (\T^/Z(Ga)\, \T2/Z(Ga)\) then p\ \Ga/Z{Ga) : Ta/Z(Ga)\

for some i G {1,2}.

(ii) There exist Xi,Xa € lrv(Ga/Z(Ga)) with Xi(l) = \GJZ(Ga) : T*/Z(Ga)\r,.

Then n(T(L)) < 3.

PROOF. The reader may check that T(L) consists of the components corre-

sponding to Xi, X2 and the Steinberg character.

Now a careful reading of the proofs in Michler's paper [11] yields

4.3 LEMMA. All the assumptions of Lemma 4.2 can be fulfilled for any simple

group L of Lie type unless L is isomorphic to one of the groups listed in 4.1.

This completes the proof of the Theorem.

ACKNOWLEDGEMENT. We would like to thank the referee for pointing out some

very helpful comments.

ADDED IN PROOF. In a more natural way the following graph T may be attached

to the character degrees. The vertices of T are represented by the elements of

p(G) = {p | p a prime, p | x(l) f°r some x G Irr(G)}.

Two different primes pi,p2 of p(G) are connected if there exists a x G Irr(G)

such that Pip2|xU)- Then the results of this paper still hold for this graph with

essentially the same proofs.
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