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MARTIN BOUNDARIES OF DENJOY DOMAINS

SHIGEO SEGAWA

(Communicated by Paul S. Muhly)

ABSTRACT. Let E (C C) be a compact set in the real axis. It is shown that

there exists an E with zero linear measure such that Martin compactification

of the domain C — E is not homeomorphic to C. Moreover, it is shown that

if for some A > ^

^^-o ((=**)')     "-0''

the set of minimal Martin boundary points of C — E 'over 0' consists of two

points. This assertion is not valid for A = ^.

Consider a domain D in C = C U {00} such that C-DcR = RU {°°}.

Such a domain D is said to be a Denjoy domain (cf. Garnett and Jones [4]). For

p e E — dD, let Pp = PP(D) be the class of positive harmonic functions on D

which are bounded except for any neighborhood of p, and have vanishing boundary

values at every regular point of E except p. Denote by dim Pp the cardinal number

of the set of minimal functions h in Pp satisfying the normalized condition h(a) — 1,

a e D. In terms of Martin compactification, dim Pp means the cardinal number of

the set of minimal boundary points 'over p'. It is easily seen that dim Pp > 1 for

every p e E (cf. e.g. Benedicks [2]). Ancona [1] and Benedicks [2], independently,

showed that dim Pp < 2 for every p e E. Also, Maitani showed that if dim Pv = 1

for every p e E (in this case, the Martin compactification D* of D is homeomorphic

to D, the closure of D in C) the linear measure \E\ of E is zero.

In this paper, applying the Benedicks criterion in [2], we shall show that the

converse of the above Maitani result is invalid (§1), and study the cardinal number

dim Pp for p which is a point of density of E (§2).

The author would like to express his sincere thanks to Professors M. Nakai, F.

Maitani, and T. Murai for their valuable discussions with him, and also to Professor

Y. Komatu for his helpful suggestion to the proof of Theorem 4.

1. We start by restating Maitani's result in the introduction.

THEOREM 1. Let D be a Denjoy domain. Suppose that dim PP(D) = 1 for

every p e E — dD.  Then the linear measure \E\ of E is zero.

Since the above result was unpublished, we give the proof for the sake of com-

pleteness.

If D is of null boundary, the capacity of E is zero, and hence |i?| = 0. Thus

we may assume that there exists the Green's function g on D.   Choose a point
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aeßnR. By the assumption, the limit

^9-t4 (=m*))<->p g(a,ç)

exists for every p e E. From the fact that g(a, ç) = g(a, c), it follows that

kp(z) = lim       '     = lim       '     = fcp(z).

Hence, by general Martin theory (here, we identify E to the Martin boundary of

D), it is seen that

h(z) = /   kp(z)dph(p) = /   kp(z)dph(p) = h(z)
Je Je

for every positive harmonic function h on D, where ph is a positive measure on E.

This implies that u(z) = u(z) for every bounded harmonic function u on D, and

hence it is easily verified that \E\ = 0.    D

Here we recall Benedicks' result in [2].   Let E be a compact subset of R =

R U {oo} containing oo. Denote by Q(t, r), í e R, the square {£ + in; |£ — t\ < r/2,

\n\ < r/2}.   For an arbitrarily fixed a in the interval (0,1) and every x in R,

let ßx(-) = ßx('\E,a) be the solution of Dirichlet problem on Q(x,a\x\) — E for

boundary values ßx — 1 on dQ(x,a\x\) and ßx = 0 on E C\Q(x,a\x\).   Then,

Benedicks showed the following:

BENEDICKS' CRITERION I.   For every a with 0 < a < 1,

f        ßx(x)
dim Poo(C — E) = 1        if and only if / x      dx = oo,

J\x\>l     \x\

i
J\x\>\

We are in the stage to prove the following

THEOREM 2. Let £Vj be a closed set in the interval [— h,h] of positive capacity.

Set

En = Eo + n = {x + n; x e Eo}        (n e Z)

and

E=   (     U     £nJU{00}.
\n= — oo       /

Then, for the Denjoy domain D = C — E, dim Poo(D) = 2.

Immediately, Theorem 2 shows that the converse of Theorem 1 is invalid.

LEMMA 3. Let E be as in Theorem 2 andhn (n e N) be the solution of Dirichlet

problem on Q(0, 3") — E for boundary values hn = 1 on dQ(0, 3") and hn = 0 on

EnQ(0,3n).  Then, there exists a constant c in (0,1) such that

(1) hn(x)<cn        M [-§,£]),

where c is independent of n and x.

PROOF. Set ci = sup^ij 72,1/2] hi(x). Then 0 < c\ < 1 and

(2) K(x)<ci        (xG[-3"-72,3"-72]).

1*12

ßx(x)
dim Poo(C — E) = 2        if and only if        \        —j—— dx < 00.

1*12
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Let h be the harmonic function on Q(0,3) - [—|, \) with boundary values h = 1

on 3(5(0,3) and h — ci on [—4, ̂ ]. Observe that

(3) M*) < M^/3n_1)        («eQ(0,3n)).

Set c = supze(j(0il) /z(,z). Obviously ci < c < 1. By (3), we see that hn(z) < c on

Q(0,3n_1), and hence hn(z) < chn-i(z) on <3(0,3n_1). Therefore, (2) implies that

hn(x) < cci        (x e [-3"-2/2,3n"2/2]).

From this, it follows that hn(z) < ch(z/3n~2) on Q(0,3n_1), and hence, by the

definition of c,

hn(z)<c2        (z e Q(0,3n~2)).

Repeating this argument, we conclude that

hn(z)<cn      (zeQ(0,i)).   a

PROOF OF THEOREM 2. Let a = §. For every xeR with 3"+1 < |z| < 3"+2,

choose m eZ such that \x - m\ < \. Since Q(0,3n) + m — Q(m, 3n) C Q(a;, a|i|),

/?xW<^n(^-m)        (2eQ(m,3n)).

With (1), this implies that

ßx(x) < hn(x -m)<cn        (xe R, 3n+1 < \x\ < 3"+2).

Therefore,

Í *&*>-£ I       *&<*
J\x\>3     \x\ r^0J3n + '<\x\<3"+2     \x\

00 n

< 2 T Ar3n+2 < oo.
—    / > 3n+1

n = 0

By Benedicks' criterion I, this completes the proof.    G

REMARK. We take the Cantor ternary set for Eo in Theorem 2. Then, for the

resulting Denjoy domain D, a boundary Harnack inequality yields that dim PP(D) =

1 for every p e E — {oo}, however dim Poo(D) = 2 by Theorem 2.

2. Throughout this section, suppose that E is a compact set in R such that 0

is a point of density of E. We shall study the cardinal number dim Pq(D), where

D = C - E.
Denote by B(t,r) the disk {z; \z - t\ < r}. For an arbitrarily fixed 6 e (0, |)

and every i£R- {0}, let fx(-) = ~fx(-;E,8) be the solution of Dirichlet problem

on B(x,6\x\) — E for boundary values ^ = 1 on dB(x,6\x\) and qx = 0 on E (1

B(x,S\x\). Choose ai and a2 in (0,1) such that 0 < 2a! < S < a2/(2 + a2).

Consider the mapping <f>(z) = 1/z. Set ux = ßi/x(-;<t>(E),cti), i = 1,2. Note that

Q(l/x,ai/\x\) C <p(B(x,6\x\)) C Q(l/x,a2/\x\).

Therefore, u2(l/x) < ix(x) < ux(l/x), and hence, by Benedicks' criterion I, we

obtain the following.
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BENEDICKS' CRITERION II.   For every 6 € (0,|),

lx(x)
dim Po(D) = 1 if and only if  / ix^"> ¿x _ 00^

•/|x|<i    1*1
f ^Y   ( X )

dim ¿b(-D) — 2 if and only if  / x      dx
J\x\<l      \x\

< 00.

1*1:

We shall prove the following

THEOREM 4.   Suppose that there exists X > | such that

\E^nit[ = 0 '
t ' \ Vlosi_1

where It = [-t, t).  Then dim P0(D) = 2.

Let B be the unit disk 5(0,1). For r € (0,1], denote by <i>r the class of harmonic

functions u such that (i) there exists a closed set Eu in [—1,1] with |i?u| > 2(1 — r),

and (ii) u is the solution of Dirichlet problem on B — Eu for boundary values u — 1

on dB and u = 0 on Eu. For the proof of Theorem 4, we need following lemmas.

LEMMA 5. Suppose that u e $r. Then u(ti) is an increasing function of t e

(0,1).

PROOF. We may assume that Eu consists of finite number of closed intervals.

Let gs be the Green's function on B and set g(z,ti) = gs(z,ti) + gß(z,—ti),

0 < t < 1. Applying Green's formula to 1—u and g(z, ti) on B+ = B n {Im 2 > 0},

we see that

(4) l-u(ti) = ±fj(x,ti)(^)       dx,

where z = x + iy.  Observe that g(x,ti), — 1 < x < 1, are decreasing functions of

t e (0,1) and (du/dy)y=o > 0. Hence, by (4), u(ti) is increasing on (0,1).    D

LEMMA 6.   For each p e [0,1), there exists a constant CP depending only on p

such that

(5) u(0) < Cprp,        0 < r < 1,

where u is any function in $r such that 0 is a regular boundary point or an interior

point of B — Eu.

PROOF.   Let g+ be the Green's function on B+ = B C\ {lmz > 0}.   Since

g+(z,w) = gB(z,w) - gB(z,w), z = x + iy,

(dg+(z,ti)\

\        dV        )y=0
(6) r-^^)   <^,   o<i<i.

2t

x2~f¿

Let U be the harmonic function on B+ with boundary values U = 1 on dB+ (1

{\z\ = 1} and U = 0 on dB+ n R. Observe that

(7) U(ti) - (4/tt) tan-11,        0 < t < 1.



MARTIN BOUNDARIES OF DENJOY DOMAINS 181

In order to show (5), it is sufficient to show that, for each n € {0} UN, there exists

a constant Cn depending only on n such that

1-2"
(8) «(0) < Cnr

When n = 0, (8) is trivial. Suppose that (8) is valid for some n. For each u € $r and

each x e [— 4, 4], there exists a ux e $Ti, i"i — min(l, 2r), such that u(x + z/2) <

ux(z), z e B. Therefore,

(9) u(x) < ux(0) < GVl"2"" = Cnr1'2'"

for almost all x e [—|, 5]. Then, (6), (7), (9), and Green's formula yield that, for

í€(0,l),

u(ti) = U(ti) + (u-U)(ti)

= U(tí) + lf1 u(x)(^^l)       dx

<Ct+Ur^-2dx+( ^±dx)
* \J-i/2 *2 + t2 J[-i,i]-{-i/2,i/2]x2 + t2      J

/ dx + 4 /     dx ]
J[-i/2,i/2]r\Ei Jeí      J

1        f   „1-2"
< Ci + - '

■K   \ t

Therefore, putting t = r1-2 "     and, by Lemma 5, we have

"(0) < u(rl~2~n~li) < Cn+ir1-2"1'1

if 0 is a regular boundary point or an interior point of B — Eu.    D

PROOF OF THEOREM 4. There exists a constant C independent of t such that

(10) |£cn/t| <Ci/(iogr1)A,      0<i<l.

Then, for each x in (0, 4],

,m 1 ,«     r       c c n ^   1        C(x + <5x)        ^ C

¿x1 l Jl      ¿x (log(x + f5x)-1)A      (\ogx~l)x

Put r — rx = C/(2(log(l/x))A) and choose t0 e (0, 5] such that rx < 1 for each

x 6 (0,<o]- Consider the function u(z) = ~¡x(x + 6xz) on B. From (11), it follows

that u e $rx for each x € (0, íq]. Hence, by Lemma 6, we can choose a p e (0,1)

such that Xp > 4 and

(12) 7x(x) = u(0) < C>£ = C/ilogx"1)^

for almost all x in (0, io], where C is independent of x. Note that a — Xp + X > 1.

Setting X(x) = ¡Ecn[0iX] dt, by (10),

(13) X(x) <Cx/(\ogx~l)x.
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Write íi = min(ío, l/eXp). Since ^(x) = 0 almost everywhere on E, using (12) and

(13), we see that

(U??Wdx<   /"' C dX
J0       x -Jo    xOogx"1)^

,C*(t'>     -f   CX(x)d(  n     '
ilOogtr1)*"       Jo {   '     \x(\0gX-l)XP t

_!_U--ÍL
x x2(logx_1)A'' \       logx"

dx

x(logx_1)cr

<c+c/'      x_n,
Jo    (loEx  l)

/"*' rfx
<C + C „ rrz <oo

./o

Similar argument yields that Tj 0)(7a:(x)/|x|) dx < oo, and therefore the criterion

II completes the proof.    D

3. In this section, we shall give an example of a compact subset E of R such

that

|£cn/t|/í = o((logí-1)-1/2)

and dim Po(C — E) = 1, which shows that the condition A > 4_ in Theorem 4 is, in

a sense, best possible.

LEMMA 7. For r in (0,1), let ur be the harmonic function on B — ([—1, — r] U

[r, 1]) with boundary values ur = 1 on dB and ur = 0 on [—1, —r] U [r, 1]. Then

there exists a constant C independent of r such that ur(0) > Cr.

PROOF. Consider two functions f(z) and g(w) such that

= y/(z + r)/(l + rz)-Ji    l + ^r(z + r)/(l + rz)

1- y/r(z + r)/(l + rz)     yj(z+ r)/(l + rz) + y/r

and

,   . _ \/(c - w)/(l - cw) - sfc     1 + \Jc(c - w)/(l - cw)

1 — \Jc(c — «0/(1 — cw)     sj(c — w)/(l — cw) + y/c

where c = f(r). Then, it is not difficult to see that g(f(z)) is the conformai mapping

of B — ([—1, —r] U [r, 1]) to B. Computing the arc length of g(f(dB)), we have

2   .  _i 6c-c2 -1
-Sin —7--T7
■K (1+c)"

ur(0) = -sin        n  i > Cr.    a

Let E = [—1,1] — \J^=2Jn, where Jn is the open interval ((1 — l/y/n)e ",

(1 + l/v/ñ)e~n), n = 2,3,.... Then, for each x € J'n = ((1 - l/2yß)e~n,

(1 + l/2y/n)e~n), there exists a constant C independent of n such that

(l/<5x)dist(x,.E) > C/y/n.

By the definition of ur in Lemma 7, this means that ^x(x + 6xz) > uTn(z), z e B,

where rn = C/y/n. Hence, from Lemma 7, it follows that

TfI(*)>«rB(0)>C/>/ñ,        xeJ'n.
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Therefore,

1 lx(x)  j_^   ^    f     lx(x)_dx

Jo     * Zr->Jj'„

>

n=2- X

ys Cen+1 e-" _ y> C

¿-*    Jñ   %/ñ      ~ n
n=2      v v n=2

Thus the criterion II shows that dim Po(C — E) = 1. On the other hand, it is easily

seen that \EC C\ It\/t = 0((\ogr1)-1!2).

REMARK.   It seems that the function ur in Lemma 7 satisfies that ur(0) =

suPuG*r M(0)' although we have not succeeded in the proof.

References

1. A. Ancona, Une propriété de la compactification de Martin d'un domaine euclidien, Ann. Inst.

Fourier (Grenoble) 29 (1979), 71-90.

2. M. Benedicks, Positive harmonie fonctions vanishing on the boundary o¡ certain domains in Rn,

Ark. Mat. 18 (1980), 53-71.

3. C. Constantinescu and A. Cornea, Ideale Ränder der Riemannschen Flächen, Springer-Verlag,

Berlin and New York, 1963.

4. J. B. Garnett and P. W. Jones,  The Corona theorem ¡or Denjoy domains, Acta Math. 155

(1985), 31-40.

Department of Mathematics, Daido Institute of Technology, Daido, Mi-
nami, Nagoya 457, Japan


