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ABSTRACT. We introduce quasi-atoms in completely distributive complete

lattices and use them to treat the representation of these lattices and their

connection with a binary relation.

1. Introduction. McKinsey and Tarski extended the frame of topological

spaces to Boolean lattices in their algebra of topology [5], of which the local prop-

erties were treated by means of atoms in [6]. On the other hand fuzzy topology

is but a special case of the generalized algebra of topology, i.e., the topology of

algebra with polarity instead of Boolean complement and its local properties can

be treated by means of fuzzy points such as in [7]. The quasi-atoms and the binary

relation -< in this paper seem to be the ideal tools of treating the local properties of

these generalized algebras, which unify the ways in treating [6 and 7] respectively.

Some ideas and techniques in this paper develop those of [7] and overlap those

of [8, 9, 10, 11 and 12].
We first introduce quasi-atoms in completely distributive complete lattices,

which are generalization of atoms and completely V-irreducible elements. And

then we introduce a base and give a procedure for generating these lattices by

it. Finally we formulate the representation of these lattices by a certain class of

complete U-semirings and their connection with a binary relation.

2. Quasi-atoms. Throughout this paper (L, <) will denote a completely dis-

tributive complete lattice. Its elements will be denoted by a, b, c and its subsets

by A, B, C.
DEFINITION 2.1 [1]. a < b iff for every A with \/ A = b there exists c G A such

that a < c.

Now we summarize the properties of the binary relation -< which will be used

frequently in the following lemma.

LEMMA 2.1   [1,  LEMMA 2.3].   (1) a < b implies a < b,

(2) a < b -< c implies a < c,

(3) o ->< b implies that there exists c such that a < c <b,

(A) a < a iff a is completely V-irreducible,

(5) a <\J A iff there exists b G A such that a <b,

&)a = \lb<ab.

DEFINITION 2.2. Let A(L) = {Aa^6 b\a ^ 0, Va¿c c < 1}, p € A(L) is called a

quasi-atom.
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We use p, q, r to denote elements of A(L) and P, Q, R its subsets. Let I(L)

be the set of all completely V-irreducible elements of L and A(L) the set of all its

atoms, then it is evident that A(L) C I(L) Ç A(L).

PROPOSITION 2.1.   P = f\v<aa.

PROOF. Let p = f\b<c c' tnen b < c implies that there exists d G L such that

b -< d < c, hence p < d and so p -< c. It follows that f\p<a a < f\b<c c, which

implies p = Ap^a a.    Q.E.D.

Proposition 2.2. a = Vp-<a p-

PROOF. Suppose a ^ 0 and 0 ^ b < a. Put p& = Ab^cc' tnen ^ — P*>- Since

a ^ Vb^d ^> Pö € A(L). 6 -< c -< a for some c and p¡, < c, so pt -< a. Consequently

a < Mp<a P and so a = \/p<a p.    Q.E.D.

3. Bases.

Definition 3.1. Q ç A(L) is called a base of (L, <) iff a - \/{p[p <a,pGQ}
for every a G L.

Proposition 2.2 implies immediately the following proposition.

PROPOSITION 3.1.   Every (L,<) has a base.

DEFINITION 3.2. p G A(L) is said to have the A-property iff for every a and b,

p < a and p < b implies p < a Ab.

DEFINITION 3.3. A standard base (in short, s-base) is a base of which every

element is V-irreducible and has the A-property.

DEFINITION 3.4. (L, <) is said to be standard iff it has an s-base.

PROPOSITION 3.2. (1) If(L,<) is isomorphic to the direct product of a family

of complete chains, then it is standard.

(2) If (L, <) is isomorphic to a complete ring of sets, then it has the s-base I(L)

which is also the minimum of all bases.

(3) If (L, <) is atomic, then it has the s-base A(L) which is also the unique base.

PROOF. (1) Being totally ordered, a complete chain is standard. Let L = 7rL¿

where L¿ is a complete chain for i G I, then A(L) is an s-base. To see this it is

enough to note that A(L) consists of those elements of L which are of the form ql

for some i G I where ql(i) G A(L¿) and ql(j) = Oj for j ^ i, and that qx < a GL

iff q'(i) <i a(i).

(2) Since p -< a iff p < a for every p G I(L), I(L) is an s-base by [2, Theorem 2].

Suppose Q is a base, then I(L) Ç Q by complete V-irreducibility.

(3) A(L) is evidently an s-base. Suppose Q Ç A(L) is any base. Let p G A(L),

then q < p for some q G Q, hence p = q G Q. Thus A(L) Ç Q. On the other

hand let q G Q. Then q -< a for some a G L. Since a = VÍpIp < o, p e A(L)},

there exists p G A(L) with p < a such that q < p, hence q = p G A(L). Therefore

Q Ç A(L). From above it follows Q = A(L), and so A(L) is a unique base.    Q.E.D.

In the remaining part of this section P Ç A(L) will be a base.
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DEFINITION 3.5. R C P is called an Z-set iff it satisfies the condition:

(1) p G R implies that there exists q G R such that p < q,

(2) p < qG R implies p € R for every p G P.

The set of all /-sets of P is denoted by L(P). For a G L, Ra = {p|p -< a,

p G P} G L(P). Let $: P —► L(P) be defined as $(g) = Rq and -<P the restriction

of -< on P.

LEMMA 3.1.  p<\/QiffpGQfor every Q G L(P) and pG P.

PROOF. By Lemma 2.1(5) and the construction of Q.    Q.E.D.

By the definition of a base and Lemma 2.1 the following lemma holds.

LEMMA 3.2.   (1) For every p G P, p < a implies p -<q < a for some q G P.

(2) a < b iff for every p G P, p -< a implies p -< b.
(3) For every p G P, p < f\A iff there exists q G P such that p < q and q < a

¡or every a G A.

(A) For every p G P, p = f\{q\q G P,p <q}.

Proposition 3.3. (l) <po<p=^p.
(2) q < r G f]p^s Rs implies q <p for every p, q, r, s G P.

(3) For every p G P there exists q,r G P such that q <p <r.

(A) Rp = Rq implies p = q for every p, q G P.

(5) Rp Q Rq and q <r imply p <r for every p, q, r G P.

If P is an s-base, then

(6) p G RqC\Rr implies there exists s G P such that p < s and s G Rqn Rr for

every p, q, r G P.

(7) For every Q, S G L(P) and pG P, Rp = QUS implies Rp -Q or Rp = S.
IfP = I(L), then
(8) <p is a partial ordering.

IfP = A(L), then
(9) <p is the same as the identity relation.

PROOF. (1) follows from Lemma 2.1(1), (2) and Lemma 3.2(1).

(2) follows from Lemma 3.2(2), (3), (4).

(3) That for every p G P there exists r G P such that r -< p is trivial. Let

p = l\b<d d and ab — \J b>c c. Since 1 ^ ab, b ■< 1, which implies b -< c -< 1 for some

c. Thus p < c and so p -< 1. By Lemma 3.2(1) p -< q -< 1 for some qG P.

(A) follows from Lemma 3.2(2).

(5) follows from Lemma 3.2(2).

(6) follows from the A-property of p G P and Lemma 3.2(3).

(7) follows from the V-irreducibility of p G P, Lemma 3.1 and Lemma 3.2(2).

(8) follows from Lemma 2.1(4).

(9) is trivial.    Q.E.D.

4. Generation of (L, <) by a base. In the following proposition suppose

P ^ 0 is any set and -< any binary relation defined on it. We shall use p, q, r, s to

denote elements of P. Let L(P), Rp and $: P —► L(P) be defined as in or below

Definition 3.5. We shall use Q, R, S to denote elements of L(P). For brevity by

Pltj,... is meant (P, ■<) satisfying the conditions of (i), (j),... in Proposition 3.3

where we need to write -< instead of -<p in condition (1).
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PROPOSITION 4.1. (1) l(P\,2) ordered by inclusion is a completely distributive

complete lattice, $(Pi 2) — {0} is a base and $ is ^-preserving.

(2) *(A,3.3) = *(Pi,a,a) - {0} f 0.
(3) $: Pi,2,4 —► $^1,2,4) is an injection.

(A) $_1: $(Pi,2,4,5) -► Pi,2,4,5 ts <-preserving.

(5) iîp S $(Pi,2,5,6) ^as í^e A-property.

(6) iîp e $(Pi,2j) M V-irreducible.

(7) <E>(P8) t'a the s-base I(L(P8)).

(8) $(Pg) ú i/ie s-6ase A(L(P9)).

PROOF. (I) Since IJSj G L(Pi,2), V$ = U5"» and so L(pi,ï) is complete.
Furthermore p G S is equivalent to p -< q G S for some q, which is equivalent to p G

\/qes Rq> it follows that S = \/qes Rq- It can be easily verified that q G S implies

Rq -< S. Thus a fortiori S = \/R^s R, from this follows complete distributivity by

[3, Theorem 1]. On the other hand f\Si = {p\ there exists q such that p < q and

q G Si for every i}, we have Rp = f\p&R Rq and so Rp = Ap _<s S, which implies

$(Pi,2) — {0} is a base. Finally $ is ^-preserving, for p -< q implies p G Rq, which

implies Rp ■< Rq.

(2) Since for every q there exists p such that p < q, it follows that 0 ^ Pi,2,3 =

1 G L(Pi¡2,a). Furthermore Pi,2,3 = /\Pep1 2 3 Ppi hence there exists p such that

Rp ^ 0, which implies $(Pi,2.3) — {0} ^ 0. Since for every 7 there exists p such

that p < q, it follows that Rq ^ 0 in $(Pi,2,3) and so $(Pi,2,3) = $(Pi,2,3) - {0}.

(3) is trivial.

(4) If Rp < Q in L(Pi,2,4,5), then there exists q G Q such that Rp < Rq, hence

q < r G Q for some r G Q, which implies p < r and so p G Q. Thus Rp < Rq

implies p G Rq, which implies p < q.

(5) If Rp -< Rq and Rp < Rs, then p G RqC\ R3, hence p < r and r G RqC\Rs
for some r, which implies p G Rq A Rs and so Rp ^. Rq A Rs. From this follows the

A-property by noting that 3>(Pi,2,5,6) — {0} is a base.

(6) is trivial.

(7) Pg satisfies automatically the conditions (l)-(5) in Proposition 3.3, so $(P8)

is a base. Since p -< p, it follows that Rp -< Rp and so Rp G I(L(P8)). Thus

$(P8) = I(L(P8)), for I(L(P8)) is the minimum base.

(8) As in (7) $(Pg) is also a base. Since Rp = {p}, Äp e A(L(Pg)). Thus

$(P8) = A(L(P9)), for A(L(P9)) is the unique base.    Q.E.D.

The above proposition can be used to construct new completely distributive

complete lattices from old ones.

LEMMA 4.1.   If P is a base of(L,<), then L(P) is isomorphic to (L,<).

PROOF. Define i¡>: L(P) -> L and tp(Q) = \J Q. Since Ra G L(P) for every

a G L, ip is onto. By Lemma 3.1 tfj is one-to-one and Q < R implies and is implied

by iP(Q)<iP(R).    Q.E.D.

5. Representation of (L, <). Let X ^ 0 be any set and P(X) the power set.

DEFINITION 5.1. (1) A complete U-semiring is a family r Ç P(X) which is closed

under arbitrary unions.

(2) For M € P(X) and N Gt, M° = \J{N\N Ç M}.
(3) For A e r and x G X, Mx = M° where M = f){N\x G N}.
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A complete U-semiring ordered by inclusion is a complete lattice. Let p(X) be

the set of those complete U-semirings satisfying the condition (1) N < \JxeN Mx,

p*(X) the subset of p(X) of which every element is a ring of sets and satisfies

the condition (2) Mx is V-irreducible and the condition (3) that Mx Ç My and

y G N implies x G N. Finally the set of all complete rings of sets is dentoed by

p**(X). Since for r G p**(X), Mx = f]{N\x G N}, Mx is completely V-irreducible

and the above conditions (1), (2), (3) are satisfied automatically, it follows that

p**(X)Cp*(X).

THEOREM 5.1. (1) A complete lattice is completely distributive iff it is isomor-

phic to r G p(X) for some X.

(2) A completely distributive complete lattice is standard iff it is isomorphic to

t G p*(X) for some X.

(3) A completely distributive complete lattice has an s-base consisting of all com-

pletely V-irreducible elements iff it is isomorphic to r G p**(X) for some X.

(A) A completely distributive complete lattice has an s-base consisting of all atoms

iff it is isomorphic to P(X) for some X.

PROOF. (1) NECESSITY. Choose X = P, where P is a base of (L,<). By

Lemma 4.1 L is isomorphic to L(P). From Propositions 3.3 and 4.1 we see that

L(P) is a complete U-semiring and Rp — f\R ^s Si = Ur ens ^¿' wnich implies

Rp = Mp and so N = (jpeN Mp. Thus L(P) G p(P).

SUFFICIENCY. Let r G p(X). It can be easily shown that x G N implies Mx < N.

By hypothesis N < \Jx€N Mx, a fortiori N < \f M<N M, which implies complete

distributivity by [3, Theorem 1].

(2) NECESSITY. From (1) we see that L is isomorphic to L(P) G p(P). From

Propositions 3.3 and 4.1 it follows that L(P) G p*(P).

SUFFICIENCY. From (1) we see that t G p*(X) is completely distributive. It

can be easily shown that {MX\MX / 0, x G X} is an s-base.

(3) follows from Proposition 3.2(2) and [2, Theorem 2].

(4) follows from Proposition 3.3.    Q.E.D.

6. A binary relation. Let p(X), p*(X) and p**(X) be defined as in §5 and

let L(X, -<), the set of all /-sets of X with a binary relation -< be defined as in §3.

DEFINITION 6.1. (1) A binary relation < is said to be w-dense iff x < y implies

that x < z < y for some z.

(2) < is said to be s-dense iff x -< y and x < z implies that there exists w such

that x < w < y and x <w < z.

(3) -< is said to be s-transitive iff for every z, z < x implies z < y and y < w

implies x <w.

(A) -< is called a pseudo ordering iff it is transitive and u>-dense.

(5) -< is called an s-pseudo ordering iff it is s-dense and s-transitive and satisfies

Rx = {y\y -< x} is V-irreducible in L(X).

(6) -< is called a quasi ordering iff it is a pseudo ordering and reflexive.

Evidently a binary relation is a quasi ordering implies that it is an s-pseudo

ordering, which implies that it is a pseudo ordering.

Let 9(X) be the set of all pseudo orderings on X, 9*(X) the set of all s-pseudo

orderings on X and 0**(X) the set of all quasi orderings on X, then 0**(X) Ç

9*(X) Ç 9(X). The following theorem generalizes the result in [4, Theorem 1].
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THEOREM 6.1.   (1) There is a bijection from p(X) onto 9(X).

(2) There is a bijection from p*(X) onto 9*(X).

(3) There is a bijection from p**(X) onto 9**(X).

PROOF. (1) For t G p(X) define a binary relation \(t) on X as follows: x\(r)y

iff x G My G t. It can be easily verified that A(r) G 9(X) and r = L(X, \(t)). Thus

A: p(X) —» 9(X) is one-to-one. Furthermore since for a binary relation -< G 9(X),

L(X, -<) G p(X) and X(L(X, <)) is the same as -<, it follows that A is onto.

(2) Since r 6 p*(X) is equivalent to A(t) G 9*(X), the restriction of A on

p*(X): p*(X) -» 9*(X) is a bijection.

(3) Since r G p**(X) is equivalent to A(r) G 9**(X), the restriction of A on

P**(X): p**(X) -♦ 0**(X) is a bijection.    Q.E.D.
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