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ABSTRACT. We introduce p-bases in completely distributive complete polar-

ity lattices and give a procedure for generating these lattices by p-bases.

1. Introduction. As in [1], the object of this paper is to lay a lattice-theoretic

foundation of treating local properties of the generalized algebra of topology i.e.,

the algebra of topology [3] with polarity instead of Boolean complement. p~ in

Definition 3.2 is introduced to overcome the difficulty in the unified treatment of

Boolean complement and non-Boolean polarity and Proposition 3.2 can be regarded

as a generalization of Boolean property.

We first examine polarity by means of quasi-atoms introduced in [1]. And then

we introduce p-bases in completely distributive complete polarity lattices and give

a procedure for the generation of these lattices by p-bases.

2. Preliminaries. Let (L, <) be a completely distributive complete lattice. We

shall use a, b, c to denote its elements and A, B, C its subsets.

DEFINITION 2.1. a -< b iff for every A with \J A = b there exists c G A such

that a < c.

DEFINITION 2.2 [1]. p G A(L) Ç L where A(L) = {Aa^6 b\a ¿ 0, \Ja^c C < 1}

is called a quasi-atom.

We shall use p, q, r to denote elements of A(L) and P, Q, R its subsets.

DEFINITION 2.3 [1]. (1) Q Q A(L) is called a base of (L, <) iff a = V{p|p G

Q,p < a} for every a G L.

(2) p G A(L) has the A-property iff for every a, b G L, that p < a and p < b

implies p < a Ab.

(3) A base Q of which every element is V-irreducible and has the A-property is

called a s-base.

(4) (L, <) is standard iff it has a s-base.

(5) A /-set of a base Q is a subset R of Q satisfying (1) p G R implies that there

exists q such that p < q G R and (2) p < q G R implies p G R for every p G Q.

(6) For aGL, Ra = {p\p <a,pG Q}.

The set of all Z-sets of a base Q will be denoted by L(Q). Evidently Ra G L(Q)

for every aGL. Let <ï>: Q —► L(Q) be defined as $(p) = Rp. We shall use I(L) to

denote the set of all completely V-irreducible elements of L and A(L) the set of all

its atoms.
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3. Polarity.

DEFINITION 3.1  [2]. A polarity ' in a lattice is involutary antiautomorphism.

Throughout the remaining part of this paper (L, </ ) will denote a completely

distributive complete polarity lattice (in short p-lattice). By a Boolean p-lattice we

mean a p-lattice with Boolean complement as polarity.

Definition 3.2. p~ = A97v Q for P> Q e A(L).

LEMMA 3.1. q < p' implies p < q' for every p. qG A(L).

PROOF. By [1, Proposition 2.1] p = /\p<a a, hence p' = Vp^a a''• Since Q < P'

implies that there exists a with p < a such that q < a', it follows that p -< q' by [1,

Lemma 2.1(5)]. Q.E.D.
Lemma 3.2. p~ g A(L).
PROOF. Since p jí 0, there exists r G A(L) such that r -< p' by [1, Lemma

3.2(2)] noting that A(L) itself is a base. It follows that p~ < r, which implies

\Jp~£a a < \/r£b b < 1. By Lemma 3.1 p~' = \Jp¿q, q', so p-fc p~', hence p~ / 0.

Since Ap~-co-a ^ AQ1*p< t\q<bh = /\qikp> Q by [1. Proposition 2.1], p~ = /\p^<aaG

A(L). Q.E.D.

PROPOSITION 3.1.   p~~ ̂  p' ana /or ever?/ <? e A(L), 17 -fc p' implies p~ < q.

PROOF. In the proof of Lemma 3.2 we have already shown that p -fc p~' and so

p~" 7Í; p' by Lemma 3.1. The remaining part is trivial. Q.E.D.

PROPOSITION 3.2.   p£a' iffp~ -< a for every p G A(L), aGL.

PROOF, p ^ a' iff a ^ p', which holds iff there exists q G A(L) such that q < a

and q -fcp' by [1, Lemma 3.2(2)], which holds iff p~ < a by Proposition 3.1 and [1,

Lemma 2.1(2), Lemma 3.2(1)]. Q.E.D.

Proposition 3.3.  (1) p— = p. (2) p < q implies q~ <p~.

PROOF. (I) Since p~ -/i. p', p -fc p~', which implies p < p. Futhermore

p      -fk p~', so p~ y< p     ', hence p < p     .

(2) Suppose p < q, then p~ ^ 9', hence q ^ p~' and so g~ -< p~. Q.E.D.

From above we see that p~ = min{o|t7 -fc p',q G A(L)} and ~: A(L) —* A(L)

is a mapping satisfying Propositions 3.2 and 3.3. If (L, </ ) is a Boolean p-lattice,

then A(L) = A(L), the binary relation -< is the same as < and p~ = p. We shall

need the following lemmas.

LEMMA 3.3.   pG A(L) is V-irreducible iff p~" has the A-property.

PROOF. For p<aV biiï p~ -fc a' A b'. Q.E.D.

LEMMA 3.4. // ~ : Q —> Q where Q ç A(L) satisfies Proposition 3.2 and

Proposition 3.3(1), then p~" = min{o/|c7 -fcp',qG A(L)}.

PROOF. Since p < p, it follows that p~ -fc p'. On the other hand if q G A(L)

and q -fc p', then p -fc q', hence p~ < q. Q.E.D.

4. p-bases.

DEFINITION 4.1. A p-base of (L, </ ) is a base Q which is closed under ~.

PROPOSITION 4.1.   Any p-lattice has a p-base.

PROOF. By [l, Proposition 2.2] A(L) itself is a base and p-base. Q.E.D.
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PROPOSITION 4.2.   (1) Any standard p-lattice has a p-s-base.

(2) Any p-lattice isomorphic to a complete ring of sets has a p-base I(L).

(3) Any Boolean p-lattice has a p-base A(L).

PROOF. (1) Q = {p\p g A(L), p is V-irreducible and p has the A-property} is

evidently a s-base and by Lemma 3.3 and Proposition 3.3(1) a p-base.

(2) By Proposition 3.3 (2) p -< p implies p~ -< p~ and so p~ € I(L) by [1,

Lemma 2.1(4)].

(3) For p~ =PG A(L). Q.E.D.

For Rp, L(P) and $ in the following propositions see §2 of this paper.

PROPOSITION 4.3.   IfQis a p-base, then

(1) -<q o -<q=^,q where <q is the restriction of -< on Q.

(2) For every p, q, r, s G Q, q < r G (~)p^s Rs implies q <p.

(3) For every p G Q there exists q, r G Q such that q < p <r.

(A) For every p, q G Q, Rp — Rq implies p = q.

(5) For every p, q, r G Q, that Rp Ç Rq and q <r implies p <r.

(6) For every p, q GQ, p < q implies q~~ < p~.

(7) For every p, p      = p.

If Q is a p-s-base, then

(8) For every p, q, r G Q, p G RqC\ Rr implies that there exists s G Q such that

p < s and s G RqdRr-

(9) Rp is V-irreducible in L(Q) ordered by inclusion.

PROOF. It follows from [1, Proposition 3.3] and Proposition 3.3. Q.E.D.

Let Pi,j,... be any nonvoid set on which there are defined a binary relation -< and

a mapping ~ satisfying the conditions (i), (j),... in Proposition 4.3.

PROPOSITION 4.4.   (1) L(Pi,2,6,7) ordered by inclusion is a p-lattice.

(2) $(Pi,2.7) is a p-base o/L(Pi,2,...,7) and$ is an isomorphism from Pi,2,...,7

onto §(Pi,2,...j).

(3) $(Pi,2,...,9) is a p-s-base.

PROOF. (I) By [l, Proposition 4.1(1)] L(Pli2,6,7) is a completely distributive

complete lattice. Define ' as follows: R' = {p\ there exists q such that p < q and

q~ <£ R} for R G L(Ph2t6t7) and p, q G Pi,2,6,7- That R < S implies S' < R' is
trivial. Since p G R iff there exists q such that p < q and Rq ç R, and since Rq Ç R

iff for every s, q~ < s implies s~ G R, which is equivalent to q~ £ R', it follows

that p G R is equivalent to p G R", hence R" = R. Thus ' is a polarity.

(2) By [1, Proposition 4.1(l)-(4)] $^1,2,...,7) is a base, 4> is a bijection and both

$ and $_1 are ^-preserving. Define Rp = Rp~. Then Rp < S' iff p G S', which

holds iff there exists q such that p < q and q"' £ S, which holds iff there exists <7~

such that q~ -< p~ and o~ ^ S, which is equivalent to Rp = Rp~ ^ S. Evidently

R~~ = Rp, By Lemma 3.4 Rp = min^li? -fc R'p, R G A(L(Pi,2,...,7))} and so
$(Pi,2,...,7) is a p-base. Since <J(p~) = Rp~ = Rp = í>(p)~ $ is an isomorphism.

(3) By [1, Proposition 4.1(5),(6)] and (2) $(Pi,2,...,9) is a p-s-base. Q.E.D.

The above proposition can be used to construct new p-lattices from old ones.



374 ZIKE DENG

REFERENCES

1. Z. Deng, Quasi-atoms and complete distributivity, Proc. Amer. Math. Soc. 103 (1988), 365-370

2. M. Kamara, Zur konstraktion Vollständiger Polaritätsverbande, 3. Reine Angew. Math. 299/300

(1978), 280-289.
3. J. C. C. McKinsey and A. Tarski, The algebra of topology, Ann. of Math. (2) 45(1944), 141-

191.

Department of Applied Mathematics, Hunan University, Changsha, Hunan,
China


