POLARITY IN A COMPLETELY DISTRIBUTIVE COMPLETE LATTICE

ZIKE DENG

(Communicated by William C. Waterhouse)

ABSTRACT. We introduce *p*-bases in completely distributive complete polarity lattices and give a procedure for generating these lattices by *p*-bases.

1. Introduction. As in [1], the object of this paper is to lay a lattice-theoretic foundation of treating local properties of the generalized algebra of topology i.e., the algebra of topology [3] with polarity instead of Boolean complement. p^{\sim} in Definition 3.2 is introduced to overcome the difficulty in the unified treatment of Boolean complement and non-Boolean polarity and Proposition 3.2 can be regarded as a generalization of Boolean property.

We first examine polarity by means of quasi-atoms introduced in [1]. And then we introduce p-bases in completely distributive complete polarity lattices and give a procedure for the generation of these lattices by p-bases.

2. Preliminaries. Let (L, \leq) be a completely distributive complete lattice. We shall use a, b, c to denote its elements and A, B, C its subsets.

DEFINITION 2.1. $a \prec b$ iff for every A with $\bigvee A = b$ there exists $c \in A$ such that $a \leq c$.

DEFINITION 2.2 [1]. $p \in \Delta(L) \subseteq L$ where $\Delta(L) = \{ \bigwedge_{a \prec b} b | a \neq 0, \bigvee_{a \nleq c} C < 1 \}$ is called a quasi-atom.

We shall use p, q, r to denote elements of $\Delta(L)$ and P, Q, R its subsets.

DEFINITION 2.3 [1]. (1) $Q \subseteq \Delta(L)$ is called a base of (L, \leq) iff $a = \bigvee \{p | p \in Q, p \prec a\}$ for every $a \in L$.

(2) $p \in \Delta(L)$ has the \wedge -property iff for every $a, b \in L$, that $p \prec a$ and $p \prec b$ implies $p \prec a \land b$.

(3) A base Q of which every element is \lor -irreducible and has the \land -property is called a s-base.

(4) (L, \leq) is standard iff it has a s-base.

(5) A *l*-set of a base Q is a subset R of Q satisfying (1) $p \in R$ implies that there exists q such that $p \prec q \in R$ and (2) $p \prec q \in R$ implies $p \in R$ for every $p \in Q$.

(6) For $a \in L$, $R_a = \{p | p \prec a, p \in Q\}$.

The set of all *l*-sets of a base Q will be denoted by L(Q). Evidently $R_a \in L(Q)$ for every $a \in L$. Let $\Phi: Q \to L(Q)$ be defined as $\Phi(p) = R_p$. We shall use I(L) to denote the set of all completely \vee -irreducible elements of L and A(L) the set of all its atoms.

Received by the editors November 3, 1986 and, in revised form, April 23, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 06D10, 06D30.

Key words and phrases. Quasi-atoms, p-bases.

3. Polarity.

DEFINITION 3.1 [2]. A polarity ' in a lattice is involutary antiautomorphism.

Throughout the remaining part of this paper $(L, \leq, ')$ will denote a completely distributive complete polarity lattice (in short *p*-lattice). By a Boolean *p*-lattice we mean a *p*-lattice with Boolean complement as polarity.

DEFINITION 3.2. $p^{\sim} = \bigwedge_{q \not\prec p'} q$ for $p, q \in \Delta(L)$.

LEMMA 3.1. $q \prec p'$ implies $p \prec q'$ for every $p, q \in \Delta(L)$.

PROOF. By [1, Proposition 2.1] $p = \bigwedge_{p \prec a} a$, hence $p' = \bigvee_{p \prec a} a'$. Since $q \prec p'$ implies that there exists a with $p \prec a$ such that $q \leq a'$, it follows that $p \prec q'$ by [1, Lemma 2.1(5)]. Q.E.D.

LEMMA 3.2. $p^{\sim} \in \Delta(L)$.

PROOF. Since $p \neq 0$, there exists $r \in \Delta(L)$ such that $r \prec p'$ by [1, Lemma 3.2(2)] noting that $\Delta(L)$ itself is a base. It follows that $p^{\sim} \leq r$, which implies $\bigvee_{p^{\sim} \not\leq a} a \leq \bigvee_{r \not\leq b} b < 1$. By Lemma 3.1 $p^{\sim'} = \bigvee_{p \not\prec q'} q'$, so $p \not\prec p^{\sim'}$, hence $p^{\sim} \neq 0$. Since $\bigwedge_{p^{\sim} \prec a} a \leq \bigwedge_{q \not\prec p'} \bigwedge_{q \prec b} b = \bigwedge_{q \not\prec p'} q$ by [1, Proposition 2.1], $p^{\sim} = \bigwedge_{p^{\sim} \prec a} a \in \Delta(L)$. Q.E.D.

PROPOSITION 3.1. $p^{\sim} \neq p'$ and for every $q \in \Delta(L)$, $q \neq p'$ implies $p^{\sim} \leq q$.

PROOF. In the proof of Lemma 3.2 we have already shown that $p \neq p^{\sim}$ and so $p^{\sim} \neq p'$ by Lemma 3.1. The remaining part is trivial. Q.E.D.

PROPOSITION 3.2. $p \nleq a'$ iff $p^{\sim} \prec a$ for every $p \in \Delta(L)$, $a \in L$.

PROOF. $p \nleq a'$ iff $a \nleq p'$, which holds iff there exists $q \in \Delta(L)$ such that $q \prec a$ and $q \not\prec p'$ by [1, Lemma 3.2(2)], which holds iff $p^{\sim} \prec a$ by Proposition 3.1 and [1, Lemma 2.1(2), Lemma 3.2(1)]. Q.E.D.

PROPOSITION 3.3. (1) $p^{\sim} = p$. (2) $p \prec q$ implies $q^{\sim} \prec p^{\sim}$.

PROOF. (1) Since $p^{\sim} \not\prec p'$, $p \not\prec p^{\sim'}$, which implies $p^{\sim\sim} \leq p$. Futhermore $p^{\sim\sim} \not\prec p^{\sim'}$, so $p^{\sim} \not\prec p^{\sim\sim'}$, hence $p \leq p^{\sim\sim}$.

(2) Suppose $p \prec q$, then $p^{\sim} \nleq q'$, hence $q \nleq p^{\sim'}$ and so $q^{\sim} \prec p^{\sim}$. Q.E.D.

From above we see that $p^{\sim} = \min\{q | q \not\prec p', q \in \Delta(L)\}$ and $\sim: \Delta(L) \to \Delta(L)$ is a mapping satisfying Propositions 3.2 and 3.3. If $(L, \leq, ')$ is a Boolean *p*-lattice, then $\Delta(L) = A(L)$, the binary relation \prec is the same as \leq and $p^{\sim} = p$. We shall need the following lemmas.

LEMMA 3.3. $p \in \Delta(L)$ is \lor -irreducible iff p^{\sim} has the \land -property.

PROOF. For $p \leq a \lor b$ iff $p^{\sim} \not\prec a' \land b'$. Q.E.D.

LEMMA 3.4. If $\sim : Q \to Q$ where $Q \subseteq \Delta(L)$ satisfies Proposition 3.2 and Proposition 3.3(1), then $p^{\sim} = \min\{q | q \not\prec p', q \in \Delta(L)\}$.

PROOF. Since $p \leq p$, it follows that $p^{\sim} \not\prec p'$. On the other hand if $q \in \Delta(L)$ and $q \not\prec p'$, then $p \not\prec q'$, hence $p^{\sim} \leq q$. Q.E.D.

4. *p*-bases.

DEFINITION 4.1. A p-base of $(L, \leq, ')$ is a base Q which is closed under \sim .

PROPOSITION 4.1. Any p-lattice has a p-base.

PROOF. By [1, Proposition 2.2] $\Delta(L)$ itself is a base and *p*-base. Q.E.D.

PROPOSITION 4.2. (1) Any standard p-lattice has a p-s-base.

(2) Any p-lattice isomorphic to a complete ring of sets has a p-base I(L).

(3) Any Boolean p-lattice has a p-base A(L).

PROOF. (1) $Q = \{p | p \in \Delta(L), p \text{ is } \vee \text{-irreducible and } p \text{ has the } \wedge \text{-property} \}$ is evidently a s-base and by Lemma 3.3 and Proposition 3.3(1) a p-base.

(2) By Proposition 3.3 (2) $p \prec p$ implies $p^{\sim} \prec p^{\sim}$ and so $p^{\sim} \in I(L)$ by [1, Lemma 2.1(4)].

(3) For $p^{\sim} = p \in A(L)$. Q.E.D.

For R_p , L(P) and Φ in the following propositions see §2 of this paper.

PROPOSITION 4.3. If Q is a p-base, then

(1) $\prec_Q \circ \prec_Q = \prec_Q$ where \prec_Q is the restriction of \prec on Q.

(2) For every $p, q, r, s \in Q, q \prec r \in \bigcap_{p \prec s} R_s$ implies $q \prec p$.

(3) For every $p \in Q$ there exists $q, r \in Q$ such that $q \prec p \prec r$.

(4) For every $p, q \in Q, R_p = R_q$ implies p = q.

(5) For every $p, q, r \in Q$, that $R_p \subseteq R_q$ and $q \prec r$ implies $p \prec r$.

(6) For every $p, q \in Q, p \prec q$ implies $q^{\sim} \prec p^{\sim}$.

- (7) For every $p, p^{\sim} = p$.
- If Q is a p-s-base, then

(8) For every $p, q, r \in Q, p \in R_q \cap R_r$ implies that there exists $s \in Q$ such that $p \prec s$ and $s \in R_q \cap R_r$.

(9) R_p is \lor -irreducible in L(Q) ordered by inclusion.

PROOF. It follows from [1, Proposition 3.3] and Proposition 3.3. Q.E.D.

Let $P_{i,j,\ldots}$ be any nonvoid set on which there are defined a binary relation \prec and a mapping \sim satisfying the conditions $(i), (j), \ldots$ in Proposition 4.3.

PROPOSITION 4.4. (1) $L(P_{1,2,6,7})$ ordered by inclusion is a p-lattice.

(2) $\Phi(P_{1,2,\ldots,7})$ is a p-base of $L(P_{1,2,\ldots,7})$ and Φ is an isomorphism from $P_{1,2,\ldots,7}$ onto $\Phi(P_{1,2,\ldots,7})$.

(3) $\Phi(P_{1,2,...,9})$ is a *p*-s-base.

PROOF. (1) By [1, Proposition 4.1(1)] $L(P_{1,2,6,7})$ is a completely distributive complete lattice. Define ' as follows: $R' = \{p | \text{ there exists } q \text{ such that } p \prec q \text{ and } q^{\sim} \notin R \}$ for $R \in L(P_{1,2,6,7})$ and $p, q \in P_{1,2,6,7}$. That $R \leq S$ implies $S' \leq R'$ is trivial. Since $p \in R$ iff there exists q such that $p \prec q$ and $R_q \subseteq R$, and since $R_q \subseteq R$ iff for every $s, q^{\sim} \prec s$ implies $s^{\sim} \in R$, which is equivalent to $q^{\sim} \notin R'$, it follows that $p \in R$ is equivalent to $p \in R''$, hence R'' = R. Thus ' is a polarity.

(2) By [1, Proposition 4.1(1)-(4)] $\Phi(P_{1,2,\ldots,7})$ is a base, Φ is a bijection and both Φ and Φ^{-1} are \prec -preserving. Define $R_p^\sim = R_{p^\sim}$. Then $R_p \prec S'$ iff $p \in S'$, which holds iff there exists q such that $p \prec q$ and $q^\sim \notin S$, which holds iff there exists q^\sim such that $q^\sim \prec p^\sim$ and $q^\sim \notin S$, which is equivalent to $R_p^\sim = R_{p^\sim} \notin S$. Evidently $R_p^{\sim \sim} = R_p$. By Lemma 3.4 $R_p^\sim = \min\{R | R \not\prec R'_p, R \in \Delta(L(P_{1,2,\ldots,7}))\}$ and so $\Phi(P_{1,2,\ldots,7})$ is a p-base. Since $\Phi(p^\sim) = R_{p^\sim} = R_p^\sim = \Phi(p)^\sim \Phi$ is an isomorphism.

(3) By [1, Proposition 4.1(5),(6)] and (2) $\Phi(P_{1,2,\ldots,9})$ is a *p-s*-base. Q.E.D.

The above proposition can be used to construct new *p*-lattices from old ones.

ZIKE DENG

References

- 1. Z. Deng, Quasi-atoms and complete distributivity, Proc. Amer. Math. Soc. 103 (1988), 365-370
- 2. M. Kamara, Zur konstraktion Vollstandiger Polaritätsverbande, J. Reine Angew. Math. 299/300 (1978), 280-289.
- 3. J. C. C. McKinsey and A. Tarski, *The algebra of topology*, Ann. of Math. (2) **45**(1944), 141-191.

DEPARTMENT OF APPLIED MATHEMATICS, HUNAN UNIVERSITY, CHANGSHA, HUNAN, CHINA