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ABSTRACT. We give a condition for a semilinear elliptic equation to have two

nontrivial solutions. Our condition does not demand any differentiability of

the nonlinear term.

1. Introduction. Let 0 C Rn be a bounded domain with a smooth boundary

(90 and g: R —> R be a continuous mapping such that #(0) = 0. We study the

boundary value problem of the form

(1) Au + g(u)=0    in 0,        u\dn = 0.

Let Xi < X2 < ■ ■ ■ < Xk < ■ ■ denote the eigenvalues of the selfadjoint realization in

L2(0) of —A with the boundary condition. In [2], Ambrosetti and Mancini proved

that if g G C2, sg"(s) > 0 for all s ^ 0 and

(2) Xk-i < g'(0) < Xk < ¡?(±oo) =   lim   g'(s) < Xk+i,    for some k > 1,
s—*±oo

then the problem (1) has exactly two nontrivial solutions. Recently, Ahmad [1]

proved that if g G C1 and

(3) 0 < g'(0) <Xi<   lim  g(t)/t < X2,
|t|-»00

then the problem (1) has at least two nontrivial solutions.

In the present paper, we consider the case

(4) Xk-i < b» < b* < Xk < a, < a* < Xk+i,    for some k > 1

where a* = supÍ5¿0 g(t)/t, o* = Iiminf|t|_00 g(t)/t, b* — limsup|f|_0 g(t)/t, and

6» = inftefl g(t)/t. In assumption (4), we have implicitly supposed A^ is single.

Our method is similar to that employed in [5], and does not demand that g is

differentiable or lim^-too g(t)/t exists.

THEOREM. 7/(4) m satisfied, then the problem (1.1) has at least two nontrivial

solutions.

REMARK. Our result is a partial extension of Theorem 1.2 of [2] and also

Theorem 1 of [1]. In fact, it is easy to see that (4) holds if sg"(s) > 0 for all s / 0

and g satisfies (2). It is also obvious that if (3) holds and 0 < g(t)/t < X2 for t ^ 0,

then (4) is satisfied with k = 1 and An. = 0. Our argument can be applied to a more

general situation (e.g., —A can be replaced by a more general elliptic operator).
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2. Proof of Theorem. In the following, we write L2, Hq and H~x instead

of L2(Q), Hq(Q) and H~l(ü), respectively. We denote by || ■ ||, | • | the norms of

H¿ and L2, respectively, the pairing between H¿ and H~x is denoted by (•, •). Let

Hi, H2 and H3 be the subspaces of L2 spanned by the eigenspaces corresponding

to the eigenvalues {\k+i,\k+2,...}, {Xk}, and {Ai, X2,...,Xk-i}: respectively.

Then Hi, H2 and H3 are orthogonal in L2. Let 0 be a normalized eigenfunction

corresponding to Xk- Then 0 G L°°(0) and H2 — {k<f>: k G R). We denote by Pi,

P2 and P3 the projections from L2 onto Hi, H2 and H3, respectively. Suppose that

g satisfies the condition (4). Then there exist positive constants a,ß,p, and 6 such

that

(5) a > Xk,        g(t)/t > a    for all t with |£| > 6,

and

(6) ß < Afc,        g(t)/t < ß   for all t with 0 < \t\ < p.

Let L = — A. For each u, v G H¿, we set

(7) (Tu,v) = (L(u - 2(P2 + P3)u) - g(u - 2(P2 + P3)u),v).

Then we can see that u — 2(P2 + P3)u is a solution of (1) if and only if Tu — 0.

So we will show the existence of u G H¿ satisfying Tu = 0 by making use of an

existence result for pseudo-monotone mappings. Let K be a closed convex subset

of a reflexive Banach space E. We denote by dK and int K the sets of boundary

points and interior points of K, respectively. Let T be a mapping from K into

the dual space E' of E. Then T is said to be pseudo-monotone if T satisfies the

following condition:

If {un} C K is a sequence such that un converges weakly to u and

(*) limsup(Tun,u„ — u) < 0, then (Tu,u — z) < liminf(TM„,u„ — z)

for each z G K.

The following result is crucial for our argument.

THEOREM  A.   Let K be a closed convex subset of E with nonempty interior,

and T: K —» E' be a pseudo-monotone mapping such that

(P) for each z G dK, there exists x G int K such that

(8) (Tz,z-x)>0.

Then there exists xo G K such that Txq = 0.

Theorem A is a simple version of Theorem 7.8 of Browder [3] (see also Theorem

0 of [5]). It can be proved by the same argument as in the proof of Theorem 1 of

[4], so we omit the proof.

To apply Theorem A, we need the following three lemmas.

LEMMA  1   (CF.  [5]).   The mapping T: H¿ —> H-1 is pseudo-monotone.

PROOF. Let {u„} C i/j be a sequence such that un converges to u weakly in

Hq and

limsup(Tiin,u„ — u)

(9) =limsup(L(un -2(P2-r-P3)w„)-!7K-2(P2-r-P3)w„),M„ - u)

<0.
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Since H¿ is compactly embedded in L2, we have that un converges to u strongly in

L2. We also have that (P2 + P3)un converges to (P2 + P3)u strongly in L2. Then

lim(2L(P2 + P3)un + g(un - 2(P2 + P3)un),un - u) = 0,

and therefore the inequality (9) implies that limsup(Lun,u„ — u) < 0. Then it

follows that Lun converges to Lu weakly in H~l and that lim(Lun,un) = (Lu,u).

Thus we find that Tun converges to Tu weakly in H~x and lim(Tun,un) = (Tu, u).

Then we obtain that

(Tu,u — z) = lim(Tun,un — z)    for each z G H¿,

and this completes the proof.

LEMMA 2.   There exists s > 0 such that

(Tu, u - 2P2u) > 0   for all u G Hç) with \[P2u[\ < s.

PROOF. We first choose a positive number c so small that

min{±(Afc+1 - a*), (6, - Àfe_1)}(p - c)2/4 - (a* - Xk)c2

+ ±(Xk+i - a*)d2 - 2c(a* - ß)d > 0

for all d G R. Since 0 G L°°, we can choose s > 0 such that supxen \z(x)\ < c

for all z G H2 with \\z\\ < s. Let u G H^ with ||P2ti|| < s. We set, for simplicity,

v = Piu, w = P2uz = P3u, and ü = v — w — z. We also set A = {x G O: |íi| > p}

and B = {x G 0 : |ù| < p}. From the definition of T, we have

(Tu, u — 2P2u) = (L(v — w — z) — g(v — w — z),v — w + z)

> Xk+i\v\2 + Xk\w\2 - Xk-i[z\2 - j  g(u)(v -w + z)dx.
Jn

Let x G A. Then since |w(z)| < c, we have that max{|t;(i)|, |z(x)|} > (p — c)/2. If

\z(x)\ > \(v — w)(x)\, then noting that ü(x)(v — w + z)(x) < 0 we find from (4) that

-g(ü(x))(v -w + z)(x) > K(\z(x)\2 -\(v- w)(x)\2).

If |^(x)| < \(v - w)(x)\, then we have by (4) that

-g(ü(x))(v -w + z)(x) > a*(\z(x)\2 - \(v - w)(x)\2).

Then from the inequalities above, we find that

Xk+i[v(x)\2 + Xk\w(x)\2 - Xk-i\z(x)\2 - g(ü(x))(v -w + z)(x)

> Xk+i\v(x)\2 + Xk\w(x)\2 - Xk-i\z(x)\2 + bt\z(x)\2 - a*\(v - w)(x)\

> (Xk+i - a*)\v(x)\2 + (Xk - a*)\w(x)\2 + (6. - Afc_i)|^(a:))2

(11) + 2(a* - ß)w(x)v(x) + 2ßw(x)v(x)

> min{i(Afc+1 - a*), % - Xk-i)}(p - c)2/4 - (a* - Xk)c2

+ (¿(Afc+1 - a*)\v(x)\2 - 2c(a* - ß)\v(x)\) + 2ßw(x)v(x)

> 2ßw(x)v(x).

Let x G B. Then we have from (4) and (6) that

(12) -g(u(x))(v -w + z)(x) > b.\z(x)\2 - ß\(v - w)(x)\2.
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Then we find that

Xk+i\v(x)\2 + Xk\w(x)\2 - Afc_,|z(x)|2 - g(ü(x))(v - w + z)(x)

(13) >(A*+1-/?)Kx)|2 + (Afc-/?)Mx)|2

+ (K - Xk-i)\z(x)\2 + 2ßw(x)v(x)

> 2ßw(x)v(x).

Then combining (10) with (11) and (13), we obtain that

(Tu,u)>2ß(     w(x)v(x)dx+      w(x)v(x) dx) = 2ß(w, v) = 0,

and this completes the proof.

LEMMA 3. There exists r > 0 such that r > 2s and (Tu,u) > 0 for all u G Hq

with \[u\\ > r.

PROOF. Let A be a positive number such that a* < X < Xk+i- Then we have

that M = mint€fl{(A - b*)t2 - (a - b*)(t + 6)2} > -co. Also we have that there

exists w > 0 such that ||i»||2 - A|d|2 > w||i>||2 for all v G Hi. Let u G H¿. Let v, w,z

and ü be as in Lemma 2. We put A = {x G O: |û(x)| > 6}, B = {x G 0|ù(a;)| < 6,

[v(x)\ < \(w + z)(x)\} andC = {xeO: |ù(x)| < 6, \v(x)\ > \(w + z)(x)\}. Then we

have

(14) (Tu,u) > \[v\\2 - Xk\w\2 - Xk-i\z\2 - f g(ù)udx.
Jn

From the conditions (4) and (5) we find that for each x G A,

-g(ü(x))u(x) > a\(w + z)(x)\2 - a*|t;(x)|2.

Also we have by (4) that for each xGC,

-g(u(x))u(x) > a*\(w + z)(x)\2 - a*|t;(x)|2 > a\(w + z)(x)\2 - a>(x)|2.

Then we obtain that for each x G A U C,

(15) ~ Xk^x^2 " Xk-i\z(x)\2 - g(ü(x))u(x)

> -a*\v(x)\2 + (a- Xk)\w(x)\2 + (a - Xk-i)\z(x)\2 + 2aw(x)z(x).

Let x G B. Then we have from (4) that

(16) -g(ü(x))u(x) > b*\(w + z)(x)\2 - b.\v(x)\2-

Then it follows that

- Afc|w(x)|2 - Aa;-i|2(x)|2 - g(u(x))u(x)

> -K\v(x)\2 - Xk\w(x)\2 - Xk-i\z(x)\2 + b.[(w + z)(x)\2

> -b.\v(x)\2 + (a- Xk)\w(x)\2 + (a- Xk-i)\z(x)\2

+ (bt - a)\(w + z)(x)[2 + 2aw(x)z(x)

> -X\v(x)\2 + (a - Xk)\w(x)\2 + (a- A,_1)|^(x)|2

+ {(A - b*)\v(x)\2 -(a- b.)\(w + z)(x)\2} + 2aw(x)z(x).
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Then since \(w + z)(x)\ < \v(x)\ + 6, we find that

- Afc|t<;(x)|2 - Xk-i\z(x)\2 - g(ü(x))u(x)

(18) >-A|t;(x)|2 + (a-Afc)|«;^)|2

+ (a - Afc_i)|2(x)|2 +M + 2aw(x)z(x).

Thus combining (15) and (18) with (14), we obtain

(Tu, u) > \\v\\2 - X\v\2 + (a- Xk)[w\2 + (a - Xk-i)\z\2 + M|0| + 2a(w,z)

> lo\\v\\2 + (a- Xk)\w\2 + (a- Xk-i)\z\2 - M|0|.

From the inequality above, we can see that there exists r > 0 such that (Tu, u) > 0

for all u G H¿ with ||u|| > r. This proves the result.

Now we set S = {v G Hi + H3: ||ii|| < r}, Si = {kcp: s < k < r}, and S2 =

{k(f>: -r <k< -s}. Let E = Hr) and K{ = S x S{ (i = 1,2). We will show that

the condition (P) holds with K replaced by iC. (i = 1, 2). Suppose that u G dKi.

Then ||P2w|| = s or ||u|| > r holds. If ||P2«|| = s, then we have by Lemma 2 that

(Tu,u - 2P2u) > 0. Since s < 2s < r, we find that 2P2u G intüfi. If ||u|| > r and

||P2w|| = d > s, then by Lemma 3, we have that (Tu,u — eu) — (1 — e)(Tu,u) > 0

for each e > 0 with s/d < e < 1. Since £||«|| < ||ti|| and £"||P2m|| > s, we have

eu G intÄ"i. Thus we have shown that (P) is satisfied. Then by Theorem A, there

exists ui G Ki such that Tui = 0. Similarly, we have that there exists u2 G K2

such that Tu2 = 0. Since Ki n K2 = 0, ui ^ u2 and this completes the proof of

the result.

References

1. S. Ahmad, Multiple nontrivial solutions of resonant and nonresonant asymptotically linear prob-

lems, Proc. Amer. Math. Soc. 96 (1987), 405-409.
2. A. Ambrosetti and G. Mancini, Sharp nonuniqueness results for some nonlinear problems, Non-

linear Anal. 5 (1979), 635-645.
3. F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc.

Sympos. Pure Math., vol. 18, Part 2, Amer. Math. Soc, Providence, R. I., 1976.

4. N. Hirano and W. Takahashi, Existence theorems on unbounded sets in Banach spaces, Proc.

Amer. Math. Soc. 80 (1980), 647-650.
5. N. Hirano, Unbounded nonlinear perturbations of linear elliptic problems at resonance, 3. Math.

Anal. Appl. (to appear).

Faculty of Engineering, Yokohama National University, Tokiwadai Hodo-
gayaku, Yokohama, Japan

Current address: Center for Mathematical Sciences, University of Wisconsin-Madison, Madison,

Wisconsin 53705


