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(Communicated by Irwin Kra)

ABSTRACT. In this paper we find a sharp upper bound for |z/'(z)//(z)|,

where / is a normalised analytic function with Re /'(z) > 0 in the unit disc.

Denote by R the class of functions / which are regular inZ? = {2:|z|<l},

and satisfy f(0) = 0, /'(0) = 1, Re f'(z) > 0 (z G D). In a recent paper [3], D. K.

Thomas proved, for some absolute constant K, that

(1)
zf'(z)

/(*) ^(l-DlogU/d-r))        <P<W-r<D.

whenever f G R. He also asked what the sharp bound for zf'/f might be, and it

is this question that prompted the present paper. We prove

Theorem. Let f gR. Then

l/,(2)l < „ .„. *,::.  (o<w=r<D,
Re S(z)lz - (1 - r)(-l - (2/r) log(l - r))

with equality for all r in the case of the function k G R given by k(z) = —z —

21og(l-z).

Equality here, for / = k, occurs since

fc'(r)=l±I,     fcM=_1_2log(i_r)       (0<r<1)
1 — r r r

and it is clear that the upper bound in the theorem is also a sharp upper bound

for \zf (z)/f (z)\, whenever f G R.

1. Proof of the theorem. We shall use the following

LEMMA.   For p and t in [0,1],

-§¿3p + (lip - l)t2 + 4(1 - 4p)t + 1 + *±p > 0.

PROOF. Denote the left side of the inequality by g(p, t), and the square [0,1] x

[0,1] by S. We have

g(p,0) = l + ^p>0, g(p,l) = 4(l-p)>0 (0 < p < 1),

g(0,t) = -t2 +4t+ 1 > 0, g(l,t) = |(1 -t)2(7-4t) >0        (0 < t < 1),
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so that the minimum value of g on dS is zero. Next we consider the critical points

(p, t) of g, given by the equations

(2) 8i3 - 33i2 + 48« - 11 = 0,

(3) p(4í2-llí + 8) + í-2 = 0.

The cubic in (2) is increasing, and so has just one real root t, which satisfies

.279 < t < .28. The function (2 - t)/(4t2 - lit + 8) is also increasing, and hence

.328 < p < .329 when p is given by (3) and t by (2). By minimising each term of g

over these values of p and t, we obtain g(p, t) > 2. Since the minimum value of g is

attained on dS, or at a critical point of g inside S, the proof is now complete.

We can now prove the theorem. Let

k(z) = -z-2 log(l-2),

then

k'(z) =
1 + z

1-z'

which shows that k G R.  By putting z = peld and integrating with respect to p

over [0, r], we obtain

(4)
k(z) 1   fr 1 + peie

r Jo   l-pe>e
dp       (z re

Now let f G R, then /' has a Herglotz representation [1, p. 22]

(5)

which gives

(6)

1    f2" 1 + e-tt
dp(t),

/(*) =—r
~ 2Wo

k(ze~xt)  ,   . ,

-ttM*)Z ¿IT .In Ze

using (4), after a similar integration to the one above. Next let

(7) 4>(r) max
\z\=r

1 + Z

1 - Z
/Re

k(z)
(0<r<l),

and note that 0 is well defined since Re(k(z)/z) > 0 (z G D) by (4). Using (5) with

(7), and then (6), we deduce

!/'(*)! <
_L /"27r|l + e~%tz

dp(t) <
0(r)

2tt L'* Re k{ze  U) dp(t) = 4>(r) Re ^.
ze -it

Obviously, equality holds if / = k. To complete the proof we need to show that

1 + r   lk(r)
4>(r) =

1 -r

and this we shall do by verifying that the maximum in (7) is attained at z = r.

We have

d_

do
1 + z

Re

Re

k(z)

k(z)

1+z
-Im-

2z 1+z

£(»•*>
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where z = ret6'. Now using (4), with the notation

J(r, x) = 1 - 2rx + r2,        x = cos 6,

we see that, apart from a nonnegative factor, the right side is

_ ( r i_4 <a ( < +  * )+, r ^q j (8in „.
\Jo   J(p,x)     J \J(r,x)      J(r,-x)J       J0    J2(p,x)      J

So the maximum in (7) is attained at z = r if the function in square brackets is

nonpositive for — 1 < x < 1, 0 < r < 1. If we write the corresponding inequality as

rt „/i _ n2\ i   /  ft  -, _ „2r d \r*p(i-p2)      i //•« i-p2   \ /   « ¿

/o   di [y0    J2(p,:r)  ßp     2 Uo   •/(/>,*)   V \J{t,x) + J(t,-x)

the integrand is

dt <0,

"(j2(í,x) + J2(í,-x)j/0  J(/x/P2V ; U2(í,x)     J(í,x)J(í,-z)

Thus it is sufficient to prove

1   r l-p2 ^ ^ J(r, -x)(J(r, -x) - J(r, x)) 4rxJ(r, -x)

r Jo   J{Pi
dp>

,x)   P-        J2(r,x) + J2(r,-x) J2(r,x) + J2(r,-xY

where —l<x<l,0<r<l.  When x is nonpositive this is obvious, so we now

assume 0 < x < 1, 0 < r < 1.

The last inequality can be written as

— p2   ,   .    1 - ui r i
rJo   J\

dp>
J(p,x)^'~ 1 + u2'

where u = J(r,x)/J(r, —x), and, since 0 < u < 1, it is implied by

— p2   , 4rxi r i - /
r Jo   J(PC-

dp > 1 — u =
,x) J(r,-x)'

Now for 0 < p < x we have 0 < J(p, x) < 1 — p2, so that

(8) lflz£Ldp>i        (0<r<x),
r Jo   J(p,x)

and we have only to prove

ir 1 - o2 4r2x
(9) /   VA^TT^        (0<x<r<l).

Jo   J \Pi r,x) J(r,-x)

Assume now that 0 < x < r < 1. We have

-2(r-x)d_ /_1_

dr \J(r,:dr \J(r,x)J        J2(r,x)

and by using this with (8) we obtain

o2 rr i     n2

<0,

Jo   J(P,x) Jx   J(p,x)

^x+ib)[[l-p2)dp

1 ( 1   3 1    ,
= x+ —-   r - -ró - x + -x-

J(r,x) \       3 3
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So a proof of (9) is reduced to that of

4r2x     ^ 1       (
- < x + —-    r - -ró - x + -xá

J(r,-x) J(r,x)

which we observe is true for x — r, since 4rx < J(r, —x). The inequality is equiva-

lent to

(10) ±r5 + ^xr4 - (8x2 + §)r3 + (^z3 + x)r2 + (-1 + 2x2 - \x4)r - ¿z3 < 0,

and because it is true for x = r it is implied by the inequality

-§z3r + (llr2 - l)x2 + (4r - Wr3)x + r2 + ±±r4 > 0,

in which the left side is the derivative with respect to x of the left side of (10). If

we now put x = tr, and then p — r2, this inequality follows from the one in the

lemma and the proof is complete.

2. Remarks. A general result of Ruscheweyh [2] has a direct bearing on the

problem of maximising \zf'/f\ for functions / in R. It shows that the extreme

function has the form

.,. ,       1 + az     ,        ,l+0z

where |a| = \ß\ — 1, 0 < t < 1. But in this approach the technical details seem

rather more awkward than those given here.

Thomas [3] notes from (1) that for bounded functions f in R

(11) M(r,/')=0(l)r (l-r)log
1

where M(r,f) = max|z|=r \f'(z)\.  The result of this paper shows that (11) also

holds for f G R, whenever Re(f(z)/z) is bounded.
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