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ABSTRACT. A fairly elementary new proof is presented of the inequality (p >

2):

i |/iY(l - I*!)"-1 dxdy < \\h\\pHP, f 6 H".

In addition, the inequality

Í |fc|"-'|ftT(l - \z\y~1 dxdy < \\h\\"HP

is shown to hold for h € Hp, p > 0, if and only if 2 < s < p + 2, generalizing

the known case a = 2.

1. Introduction. Let U denote the open unit disk in the complex plane with

boundary T — {z: \z[ = 1}. Let m denote normalized area measure on U (i.e.

r d9 dr/ir) and let o denote normalized arc length (d6/2ir) on T.

The inequality of Littlewood and Paley referred to in the title is the one contained

in the following thorem, proved by J. E. Littlewood and R. E. A. C. Paley in [3].

THEOREM A. If f is a function in LpiT) for p > 2 and if u is the harmonic

function on u defined via the Poisson integral of f, then

(1.1) Í \Vu(z)\p(l - \z\2Y-1dm(z) <CP f \f\p do-

where C is a constant independent of f and p.

The usual method of proof is to apply the Riesz Convexity Theorem to the

operator / h-> Vu(z)(1 — \z[2) acting on functions / on the measure spaces (T,a)

and taking them to functions on (U, (l — [z[2)~1dm(z)). It is relatively easy to show

that this operator is of type (2,2) as well as (oo, oo) and the Riesz theorem produces

(1.1). There is another proof outlined in [3] but it is, if anything, deeper than the

one I have just described. Some time ago (in [4]) I made use of Theorem A to obtain

estimates on integrals of the form f\h^\qdp where h is an analytic function in

the Hardy space Hp, q > p and p is a positive measure on u. The method I used

was to integrate local estimates of |/i(")(z)| in terms of an area average of \h'[ over

a disk containing z. The result was (/ [h^[<> dp)1'* < C(J [h'\p(l - [z^^dm)1^

provided p satisfied a certain simple inequality similar to Carleson's condition. It

occurred to me at the time that I was simply swapping one measure p for another,

(1 — \z\)p~1dm, satisfying a similar condition and that a similar approach might
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be used (i.e. integration of local estimates) to get directly to (/ [h^^ dp)1^ <

C(J \h[p dcr)i/p without using Theorem A. This turned out to be the case but

would have unnecessarily complicated the paper [4] and so it never appeared there.

This approach produced (and is essentially equivalent to) a proof of Theorem A

which is quite elementary and it is this proof that I will present here.

The method of proof I will present is based on two ideas. Firstly, the integrand

|Vu(2)|p in (1.1) may be estimated in terms of an area average of some other

function and secondly, a weighted area integral of this other function is equal to

the Lp norm of the boundary function /. To apply this method we need an area

integral that equals the Lp norm of /. This is provided by the following theorem,

Theorem B. This theorem tends to get rediscovered from time to time. I had

thought it part of the mathematical folklore, having found only a weakened version

in [6]. I am grateful to the referee for pointing out the references discussed at the

end of the proof.

THEOREM B.   If u is real valued and harmonic in a neighborhood of the closed

disk U, and h is holomorphic in such a neighborhood then

(i) ifp>l

[ [u\p do- = \u(0)[p + ?-— f |Vw|2|u|p-2 log ̂  dm.
J 2     J \z\

(ii) ifp>0

[ [h\p do- = \h(0)\p + V— f \h'[2[h\p-2 log i dm.
J 2 J \z\

I will prove here only (ii) and merely indicate how (i) differs. If one assumes

only that h is holomorphic in U (not U) then the right side of (ii) becomes equal

to limr_i J \h(reie)\p da(9) which is, by definition, H^H^p and its finiteness is the

criterion for h to belong to the Hardy space Hp. For any function u on T we write

\\u\\p = / [u\pdcr. When h is analytic in a neighborhood of U, we have ||/i||//p = \[h\\p

and we will normally use only the latter expression.

PROOF OF THEOREM B. We make use of Green's formula:

/ (gAv — vAg) dxdy =  /    (gdv/dn — vdg/dn) ds
J R JdR

where ds denotes arc length integration. We apply this to the following circum-

stance v = \h\p, g = log(l/|2|), R = U\eU - (J£=i ^* where Dk is the disk of

radius e centered at o¿ and {ax,a2,... ,an} are the zeros of h in U. We obtain

7T f p2|/i|p-2|/i'|2 log ̂  dm = 2n [ \h\p da- [     \h\p— -Y o(l)
Jr [Z\ Jt JdsU e

where o(l) represents integrals around dD^ that go to 0 as e —» 0. Since R —» U

as e —» 0 and fd£U \h\p ds/e -* 27r|/i(0)|p we obtain (ii). The reason the integrals

around dD^ tend to zero is that they ae dominated by

sup (\h\p~l \h'[ log -i- + \h\p-) 27T£
Dk \ [z[ ej



AN INEQUALITY OF LITTLEWOOD AND PALEY 889

which tends to zero because |/i|p_1|/i'| = 0(enp~1) if n is the order of zero of h at

a*;. Similarly the integral over R tends to that over U because |/i|p_2|/i'|2 log(l/|z|)

is integrable even near zeros of h (where it behaves like [z — afc|"p~2).

In part (i) the same proof is used except the calculation of A|u|p yields

(p2—p)|u|p_2|Vw|2 and the zero set of u is one-dimensional instead of O-dimensional

so the limit arguments require p > 1.    D

We will use Theorem B only in case p > 2. The problem of avoiding the zero sets

of h and u need not even occur (\u[p and \h\p are twice continuously differentiable)

and the proof is more elementary.

An equivalent version of Theorem B appears as equations 4.3 and 4.7 on p.

243 of P. Stein's paper [8]. To get the version presented here one has only to

integrate those equations from 0 to 1. Stein's proof is in fact essentially equivalent

to the one given here. Equation 4.3 of Stein's turns out to be a special case of an

equation due to Hardy, so it is called the Hardy-Stein identity. Another version

of Theorem B in a more general setting is Equation 10, p. 462 of C. S. Stanton's

paper [7]. The right hand side of Theorem B (ii) is there expressed in the form

(p2¡2) J wp~2Nh(w)dm(w) where Nn is a "counting function". The change of

variables w — h(z) transforms this integral into B(ii). This was pointed out by J.

Shapiro in [6].

The proof of Theorem A that I will present in the next section proceeds under

the assumption that u is harmonic in a neighborhood of U so that the boundary

function / is just u[t- Those readers needing the greater generality stated in

Theorem A may simply apply the weaker result to ur = u(rz) and use Fatou's

theory to produce (1.1) in the limit as r —> 1.

The most advanced facts needed for my proof are (1) the representation of a

harmonic function u in terms of its boundary values as u(z) = u(0) -Y Yln^i unZn +

UnZ™ where un, n = ±1,±2,..., are the Fourier coefficients of u(el6), (2) the

orthogonality of exponentials etne and Parseval's relationship [\u\\2 = |u(0)|2 +

^¡" |u„|2, (3) Holder's inequality ||u||p < ||w||2, and Fubini's Theorem.

Because of an exchange of letters with J. Arazy and J. Peetre, I was led to a

generalization of one inequality (i.e. / |/|p_2|/'|2(l — \z[) dm < \\f[\p) implicit in

Theorem B(ii). This generalization effectively allows 2 to be replaced by numbers

s with 2 < s < p -Y 2. §3 contains the proof of this generalization. It is not in any

way related to §2 and may be read independently. The proof is not elementary and

presumes familiarity with the basic theory of Hp spaces and at least the notion of

Carleson measures.

2. Proof of Theorem A. In this section we present our proof of Theorem A.

As already mentioned this proof relies on integrating a local estimate. It is this

estimate that we establish first.

LEMMA.   If'2 < p < oo then

(2.1) |Vu(0)|p < 2p-lp(p -1) f \u(z)\p-2\Vu(z)\2 log rir dm(z)
Ju \z\

for every real valued function u harmonic on U.
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PROOF. The formula for u(z) in terms of the boundary values of u is

oo

u(z)-u(0) = J2(UnZn+U-nZn)

n=l

Í-27T
where un = /0 n u(el0)e in0 d9/2ir are the Fourier coefficients of u. Simple calcula-

tions show that

|VU(0)|2=4|Ul|2<4(H2-K0)|2)

by the Parseval relationships. We may, without loss of generality, assume that

either it(0) = 0 or w(0) = 1. In the first case we clearly obtain

(2.2) |V^0)|p<2p(HP-|u(0)|p)

because ||u||2 < ||w||p- In case u(0) = 1 we also get (2.2) by applying the easily

proved inequality (x — l)p^2 < xpl2 — 1 for x > 1 to the right side of the inequality

|Vci(0)|p < 2p(||tt||2 - |u(0)|2)p/2 with x = \\u\\l and |u(0)|2 = 1. Combining (2.2)

with Theorem B yields the desired conclusion (2.1).    D

The part of Theorem B dealing with analytic functions results in a similar in-

equality for functions / analytic on U:

(2-3) [f'iO)\p<Ç [ [f'iz)\2\og±-dmiz).
¿ Ju \z\

The only difference in the proof is the estimate |/'(0)|2 < ||/||2 - |/(0)|2 which loses

the factor of 4 present with harmonic functions and their gradients.

We now turn to the proof of Theorem A. Our goal is to establish the inequality

I \Vu(a)[p(l-\a\2)p-1dm(a) < Cp [ |u|p-2|Vu|2log ^dm(z).
Ju Ju \z\

The Littlewood-Paley Inequality will then follow immediately from Theorem B.

We start with inequality (2.1). By rescaling (applying the inequality to u(z/2) and

changing variables) we obtain

(2.4) |Vu(0)|p<  Í [uiz)\p-2\Vuiz)\2 dviz)

where v is the measure concentrated on {z: \z\ < 1/2) with

dviz) = 22p-1pip - 1) log ^-Mz),
¿\z\

and u is harmonic in U.

Let Qa(z) — (a — z)/(l — âz) so that uoQa is harmonic in U and apply (2.4) to

uoQa to obtain

|Vu(a)|p(l - |a|2)p < j\uo Qa|p"2|(VU) o Qa\2[Q'a[2 dv.

Now integrate this inequality with respect to (1 — |a|2)_1dm(a), exhanging in-

tegrals on the right, and then estimate the right side in an obvious manner to

obtain

/
Vu(a)|p(l-|a|2)p-1dm(a)

2

(2.5) <v(U)   sup    / [u o Qa(z)|p-2|(Vti) o Qa(z)|2 IQ°(z)l   dm(a).
\z\<l/2J l-\a\
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Thus we are reduced to estimating the supremum in (2.5). Our first step is to

change variables by putting w = Qa(z). The transformation a —► w is not conformai

but it is easy to solve for o, obtaining

a = [w(l - [z\2) + z(l - M2)]/(l - \zw\2).

From this and standard mapping properties of Qa it follows that the transformation

a —> Qa iz) is one-to-one and onto. Computing the Jacobian of this transformation

yields

|1 -az\2
(2.6) dmia) =-¡-^dmiw).

1 — [wz[¿

(The exterior calculus and the formula dm(w) = i2ni)~1dw A dw help to organize

the calculations. Without these it is tedious, but straightforward.) More calculation

shows that

|Q'a(*)|2/(l - |a|2) = (1 - M2)[(l - k|2)|l - *f l"1.

Putting this into (2.6) and (2.5) yields

\Vu(a)f{l-\aff~1dm(a)

' \u(w)\»-*\Vu(w)\2 „y± ~ \^

/'

,„, Í,   ,   vi« o,~  /   m9    (1 - \w\2)dm(w)
<v(U)   sup   / \uiw)\p-2\Vuiw)\2    (_        "_ ¿

\z\<l/2J I1       1*1   )\L       \WZ\   )

(2.7) < ^v(U) f |tiH|p-2|Vu(u;)|2(l - [w\2) dmiw).

Now 1 - H2 < 21og(l/|w|) and v(U) = 22p~4p(p - 1)- Put this in (2.7) and
combine with Theorem B to obtain

I |Vti(a)|p(l - |a|2)p-1 dmia) < (22p+2/9)||u||p.    D

The calculations for an analytic function go much the same and lead to the

desired inquality

/9P+2
|/'(a)|p(l-|a|2)p-2dm(a)<-^-||/||p.

A more elementary proof with somewhat larger constants can be obtained by

making use of the special form that v has. The above approach shows that the

inequality (2.4) for any finite measure v compactly supported in U suffices to prove

Theorem A. (More generally almost any local inequality at the origin will generate

some global inequality.)

3. A generalization of Theorem B. In this section we generalize part of

Theorem B by proving the following result.

THEOREM C. Let 0 < p, s < +oo. Then there exists a constant C = C{p,s)

such that

(3.1) / i/wnrwrfi - Mr1 dmiz) < c[\f\\p
Ju

for all f e Hp if and only if2<s<p+2.
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PROOF. If s > p + 2 then \z\p~s is not integrable dm over U so (3.1) fails for

f{z) = z. If s < 2 then (see below) there is a function g belonging to Hs such

that / |</|s(l — |z|)s-1 dm = +00. Writing g = h + k where h and k are zero free

we deduce that such a g exists which is zero free. Put / = gslp so that / e Hp

and \g'[s = (p/s)s|/|p_s|/T- Thus (3.1) fails for this / since the left side is infinite

while the right is finite.

Now suppose 2 < s < p + 2 and let / e Hp. Write f = Bg where B is a Blaschke

product and g has no zeros and ||^||p = ||/||p. Now

\f\p-°\f'[° = [Bg\p-s[B'g + Bg'\s

(3.2) < 23-li[g\p[B[p-s\B'\3 + \B\*\g\p-a\g'\a)

We may thus estimate the appropriate integral for / in terms of two integrals

involving g and B. These estimates follow.

First put h = gp/s so that h e Hs and \h'[a = ip/s)\g[p-3[g'[s. Thus

f |S|PMp-V|s(l - l^l)8"1 dmiz) < C Í \h'\sil - \z\Y~1 dmiz)

(3-3) <C\\h\[l = C\\g\\p = C\\f\\p.

by Theorem A.

For the second estimate we apply Carleson's Inequality (see [1, pp. 238 and 239]).

This states that there is an absolute constant C such that, for every g belonging to

Hp,J[g[pdp<C\[p\\4g\\p where

IIpII* = sup { f{l - [a[2)/\l - az\2 dpiz) : a e U \ .

We apply this with dp = [B[p~s[B'[sil - |2;|2)s_1dm.  Then we need to estimate

IIpII* = sup{G(a): aeU} where

Cia) = [ l)~^2.2\B{z)\p-a\B'{z)\B{l - [zfy-1 dmiz).
j   11     az\

Changing variables by putting z = (u> + a)/(l + aw) gives

p~s     a       / ... _L„ \ Is
2\s-lC{a).f\B(^\-\4-B(ï+£\v '     J  [    \1-Yïïwj dui     \1-Yawj

(1-IH )      dm(w).

We are thus reduced to estimating the left side of (3.1) for certain functions B on

the unit sphere of H°°.

For such B we have, from the conformally invariant form of Schwarz's Lemma,

that [B'iz)[{l - \z\2) < 1 - \Biz)[2 < 1. Thus

Í \Biz)\p-s[B'iz)\sil - [zf)3-1 dmiz) < f |B(z)|«-2|S'(«)p(l - |z|2) dmiz)

where q =p + 2-s > 0. (We have just replaced |.B'(z)|s~2(l - |^|2)s_2 by 1, which

dominates it.) We conclude that Cia) < C\[B[[P < G by Theorem B again. Thus

/'
\g\p\B\p-s\Br (1 - M)3'1 dm < C\\g[\p = C||/||p.

Combining this with (3.3) and (3.2) gives (3.1).    D
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The statement that there is a function f e Hs such that / |/'|s(l — |z|)s_1 dm =

+00 whenever s < 2 is not easy to come by in print. In [2] there is a construction

which yields this result for 1 < s < 2 and Rudin [5] obtains it for s = 1. Both

constructions produce a bounded function /. Since bounded functions also satisfy

|/'(z)|(l — |z|) is bounded we see that, for s < 1

Í \f'iz)\sil - H)3"1 dm>c Í \f(z)\ dm = +00

if / is the bounded function of Rudin's example.
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