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ABSTRACT. We exhibit a set of reals recursive in E; which is not in &, the
smallest o-field containing analytic sets and closed under operation &. As a
consequence, a conjecture of Hinman is shown to be false.

1. Introduction and preliminaries. The analogy between classical descrip-
tive set theory on w* and recursion theory was first firmly established by Addison
(and independently by Mostowski) who perceived Kleene’s hyperarithmetical rela-
tions as the effective analogue of the classical Borel sets. In [5], Hinman carried
this analogy further by obtaining an effective analogue of the classical C-sets of Se-
livanovskii (the smallest o-field containing closed sets and closed under the Suslin
operation &/ ). Hinman obtained the effective hierarchy by generalizing Addison’s
construction of the “effective” Borel hierarchy which, roughly, consists of alter-
nating applications of r.e. union and complementation. Briefly, Hinman’s method
consists of assigning to each set C C w as it is generated an index or code 7(C) and
at each stage of the inductive definition applying operation & to those sequences
{F,} of subsets of w for which n — #(F,) is recursive in some set previously gen-
erated. The class of sets thus obtained is exactly ;sc(E;) (the class of subsets of
w recursive in E;), where E; is the Tugué type-2 object associated with operation
&/ . This generalizes the result for the effective Borel sets (HYP), since HYP is
precisely the class of sets recursive in 2E, the Kleene’s type-2 object associated
with countable union.

Hinman’s method does not seem to work for w*. In his thesis [4], he obtained
an effective hierarchy on w“ whose scope, however, forms only a proper subset of
25¢(E;) (the class of subsets of w* recursive in E;). One naturally asks whether it
is possible to obtain a “reasonable” effective analogue of the classical C-sets on w*
which would exhaust 2s¢(E1). In this short note we show that this is not possible.
This we prove by showing that a natural example of a set universal for the C-sets
in w* is actually recursive in E;. (Such a set was first constructed by Burgess
and Lockhart in [3].) This implies that gsc(E;) is not a subset of the C-sets and
consequently any reasonable effective version of the C-sets cannot exhaust gsc(Ey).
This incidentally shows that a conjecture of Hinman [5, p. 138] is false.

As in [5], we work with Hausdorff’s § — s operations, though it would be conve-
nient to think of these operations as operation & . (These can also be thought of
as quantifiers.) A § — s operation with base N C 2 (w) (power set of w), written

Received by the editors April 22, 1987.
1980 Mathematics Subject Classification (1985 Revision). Primary 03D55, 03D65; Secondary

04A15.
Key words and phrases. Recursion in type-2 objects, effective hierarchy, C-sets, operation &,
6 — s operations, universal sets, games.

©1988 American Mathematical Society
0002-9939/88 $1.00 + $.25 per page

921



922 RANA BARUA

©N, is defined as

en({An:new)) = J [ 4n

neEN nen

where {A,: n € w} is a sequence of subsets of a set X.

Common examples of § — s operations are countable union (U) and countable
intersection (N) with bases {n C w: n # p} and {w} respectively. The operation
& is also a § — s operation with a base consisting of all n C w such that

{é(n) = (a(0),...,a(n—1)): n€w} Cn, forsome acw”.

({no, - ..,nk—1) denotes the Godel number or sequence number of (ng,...,nk—1)).
For any 6 —s operation ¢, V() denotes the smallest family containing closed sets
and closed under ¢ and complementation. Thus V(U) = A} and V(&) = C-sets.
For any two § — s operations ¢ and ¥, we say that ¢ subsumes ¥, in symbols
© > ¥, if there exists a recursive function f such that for any family {A,: n € w},

\I/({An: neEw}) = QO({Af(n)t ne w})

Clearly operation ./ subsumes both U and N.
With each § — s operation ¢ (with base V) we associate a type-2 object F, (also
writte Fy) defined by

0 if (In € N)(Vn € n)(a(n) = 0),
1 otherwise.

Fo(e) = {

2. Notation. We denote the set of natural numbers by w. The letters ¢, j, k,
m,n,... will stand for natural numbers. Seq will denote the set of sequence num-
bers of finite sequences of natural numbers. The letters s,t,... will denote finite
sequences of natural numbers as well as their sequence numbers. The letter e will
denotes the sequence number of the empty sequence. If s,t € Seq, then st denotes
the sequence number of the concatenation of s followed by t; otherwise it is 0. If
s,t € Seq, then we write s C t if t extends s (both considered as finite sequences).

The set of infinite sequences of natural numbers will be denoted by w*. Elements
of w¥ will be called reals and are denoted by «,3,.... The letters &,n, with or
without subscript, will denote subsets of w. If & € w*, then for each n € w, (o) is
a real such that (a)n(m) = a({(n,m)) for all m € w.

Unexplained notation and terminology from descriptive set theory are as in
Moschovakis 8], while those from recursion theory are as in Hinman [6].

ACKNOWLEDGEMENT. I am grateful to V. V. Srivatsa for pointing out the
import of the main result.

3. The main result. We now exhibit a set D which is universal for V(). We
shall need the following relations.

S (@) %! & codes some tree on w
— (Vs)[a(s) = 0 — (Seq(s)&(Vt)(Seq(t)&t C s — a(t) = 0))].
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Sa(a) % 5 is terminal for the tree coded by o
— Si(a)&a(s) = 0&(Vn)(a(s * (n)) # 0).
WF(a) %l & codes a wellfounded (wff) tree on w
> S1(e) and (VB)(30)(B(3) # 0))
< S1(a) and (V5)(3)S2(, B(7)).

Plainly, S; and S; are 7 while WF is l.
If T is a wif tree on w then |T| denotes its length. If T # &, then |T| = p(e),
where p is the rank function (cf. [8, 2D]). If & codes a wff tree T then put ||| = |T.
Let X be a space of type 0 or 1 and let G C w¥ x X be a good universal set for
%9 subsets of X. Define
H(a,z) & (G(a",z)&a(0) = 0) V (-G(a”, z)&a(0) # 0),
where o* = An - a(n+1).
Now, given a § — s operation o, we define D(N; X) C w* X w* x X as follows.
(0,6,z) € D(N; X) «~ WF(0)
and (3no € N)(Vno € no)(Vn1 € N)(3n1 € m)(In2 € N)
-+ (3k)[S2(0, (no, . - ., nk—1))&H((6)s, 2)].
L ——
t
(As is usually the case, the infinite string of quantifiers is interpreted as a game
played between two players V and 3. Cf. [8, 6D].)
Notice that the above equivalence can also be written as
(0,6,2) € D(N; X) < WF(0)
and (3no € N)(Vno € no)(Vm € N)(3ny € n1)(3In2 € N)(Vng € n2)
-+ (Vk)[S2(0, (no, . . . ynk—1)) — H((6)s,2)].
P ——
t
This is because for any wif tree T and any sequence {m;} there is a unique ¢ such
that (mog,...,m;_1) is terminal for T.

LEMMA 1. D(N;X) is universal for V(pn) subsets of X.
PROOF. This follows from the arguments of §5(b) of [2].
LEMMA 2. If pn subsumes &, then D(N, X) is recursive in F .

PROOF. Fix a recursive function (6,s) — 6° from w* X w — w* such that
(6%); = (6)sas- If B codes a tree T then let B be a code for T, = {t: sxt € T}
such that the function (8, s) — f; is recursive. Now define a partial function ¢ as
follows.

o(c,0,6,z) ~0, if WF(o) and ||o|| =0 and H((6)e, z);
~ Fn(Ak-F (MK - {c}FN (0, 65K, z))),
if WF(o) and |jo|| > 0;
~ 1, otherwise;
0, if (Vn € N)(3n € n)(a(n) =0);

where F} (o) = { 1, if (3n € N)(Vn € n)(a(n) # 0).
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Since o subsumes &, plainly WF is recursive in Fn and hence ¢ is recursive in
F . By the recursion theorem there is an index ¢* such that

o(c*,0,6,z) ~ {c*}F (0,6, 1).

We shall show by induction on ||o|| that {c*}F" is the characteristic function of
D(N;X). The case |jo|| = 0 is clear. Now suppose WF (o) and ||o|| > 0. Now

{c*}F(0,6,2) ~0
iff Fy(Ak - FQ K - {c*}F™ (0 kry, 6B, 2))) > 0
iff (3" € N)(¥n' € n')(¥n" € N)(@n" € n")[{c"}* (0t 8™ ™, 2) = 0]
iff (30’ € N)(Vn' € ') (V0" € N)(3n" € 1")[(0(nr mry, 6™, 2) € D(N; X)),
by induction hypothesis
iff (0,6,z) € D(N;X), by definition of D(N; X).

Then {c*}¥~ is the characteristic function of D(N; X) and so D(N; X) is recursive
in F N-
As an immediate consequence of the above we have

THEOREM. Suppose ®y subsumes operation &/ . Then osc(Fy) is not a subset
Of V(F N)-

PROOF. Since V(Fy) is closed under complementation by the usual diagonal
argument, the set

D' ={a: ((2)o, ()1, ) € D(N;w*)}

is not in V(F ). But by Lemma 2, D’ is recursive in F .

REMARKS. For any 6 — s operation ®, it is quite reasonable to expect that
any effective version of V(®) would be a subset of V(®). Thus if it were to ex-
haust osc(Fg) then for & > &/, this would have implied that 2s¢(Fg) C V(®),
contradicting the above theorem.

This is precisely the reason why Hinman’s conjecture [5, p. 138] is not true. In [5,
§8], by adapting Moschovakis’ definition of a hyperanalytic predicate 7], Hinman
discussed a possible effective I'-hierarchy over w* for any § —s operation I'. For each
a € w¥ one defines 1" (), and for each u € IT () a set [u;T',a] C w, just as in the
case of the effective -hierarchy over w (briefly outlined in the introduction above)
except that enumerations are taken relative to a as well as to some previously
constructed set (cf. [5] for detail). Then for any ordinal A recursive in Fr, put

[4;T)2 = {a: u€ IL,(a) and 0 € [y;T,a]}.

These sets are easily seen to be recursive in Fr and Hinman conjectured that they
exhaust gs¢(Fr). But it is not hard to see that each of the sets [u;T)2 is in V()
and by our remarks made earlier, these sets cannot exhaust ysc(Fr) at least for
operations I' subsuming &/ .

In conclusion we would like to point out that one, however, obtains a hierarchy,
which exhausts in ; s¢(Fr) by taking sections of D(I';w) at reals (3, ) of increasing
complexity. This is discussed in detail in [1].
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