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ABSTRACT. We prove that, over a PID, if two matrices A and B have the

same size, present isomorphic modules and have rank > 2, then A is equivalent

to B. This answers a question raised by Nakayama in 1938. Our solution makes

use of a number of facts about the algebraic K-theory of noetherian rings.

Let A be a PID, that is, an integral domain (not necessarily commutative) in

which every left ideal and every right ideal is principal. We call m x n matrices A

and B over A equivalent, and write A ~ B, if B = PAQ for invertible matrices

P and Q over A. It is well known [T '37, A '38, J '43] that every such A is

equivalent to a diagonal matrix D in which each diagonal entry is a total divisor of

the next, that is,

(0.1) D = diag(di,d2, • ■ •)    where each Ae¿¿ noí¿A 3 Ad¿+iA.

Three obvious invariants for the equivalence class of A are m, n and the isomorphism

class of the left A-module

(0.2) U = A7(AmA) a 0 A/Adi
i

presented by A. Nakayama [N '38] refined this by observing that the isomorphism

classes of the left A-modules A/Adi (each counted as often as it occurs) are invariants

of the equivalence class of A. However, the main purpose of his paper was to lament

the fact that very little is known about the converse question: What invariants other

than m, n and the isomorphism class of U are needed to determine the equivalence

class of A?

It was apparently well known that additional invariants are needed, even in the

case of 1 x 1 matrices. For explicit examples, see [LR '74, 4.6, §5] and [GL '88].

The surprising answer to Nakayama's question is that, except in rank 1, there are

no additional invariants:

ELEMENTARY DIVISOR THEOREM. //rank(A) > 2, then m,n and the iso-

morphism class of U form a complete set of invariants for the equivalence class of

A.

For completeness we note that the situation where rank(A) = 1 but (m,n) ^

(1,1) is essentially the same as the lxl case. Let [a] and [b] be inequivalent lxl
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matrices such that A/Ao = A/A6, and let A and B be m x n matrices with a

and b respectively, in their (1, Imposition and zeros elsewhere. Then A and B are

inequivalent but the A-module (0.2) presented by A is isomorphic to the analogous

A-module presented by B.

The Elementary Divisor Theorem above was proved in [GL '88] for the case that

A is module-finite over its center. In the present paper, we show how to extend

that proof to the full noncommutative situation.

OUTLINE OF PROOF. It is convenient to take a more abstract point-of-view, re-

placing matrices with module homomorphisms. We call A-module homomorphisms

f,g: M —► N (often acting on the right) equivalent, and write / ~ g, if g = tpfd

for automorphisms tp and $ of M and N respectively. Letting a denote right

multiplication by the m x n matrix A yields a free resolution

(0.3) Am 3 A" X U

where U is the module in (0.2). Similarly, right multiplication by B yields another

resolution (ß, g) of U, since we are assuming that A and B present isomorphic

modules.

We want to prove that a ~ ß.

The problem is easily reduced to the case that a is one-to-one, as in the proof

of [GL '88, 3.6]. (The kernel of a splits off since A is a PID.) Thus, from now on

we will be concerned with a presentation

(0.4) K^P = kn 1>U

of a left A-module U, where a denotes the inclusion map. What we want to prove is

that U is uniquely presentable by P, that is, if g: P -» U is any other presentation

of U by P, then g ~ /.

It is easy to reduce the problem to the case that U has finite length, as in the

proof of [GL '88, 3.5] (because the torsion submodule of U splits off).

The first part of what we prove in this paper is that the theorem is "stably"

true, that is, there is an s such that IIs is uniquely presentable by Ps. This is done

in §1.

It follows that fs~(g(B /s_1) since both are presentations of Us by Ps. The

final step is then to show that, when the free module P has rank > 2, /s_1 can be

cancelled, yielding / ~ g. This is done in §§2 and 3.

There are two difficulties in this proof that are not present when A is module-

finite over its center. First is the presence of completely faithful A-modules of

finite length, that is, faithful modules U of finite length such that every nonzero

submodule of every homomorphic image of U is faithful. We reduce the cancellation

problem to the case of presentations of unfaithful modules in §2, and then do the

unfaithful case in §3. It is in this last part that the ideas from if-theory are used.

The second difficulty is that localization at maximal ideals of the center of A (one

of the main tools in [GL '88]) does not seem very useful in the present situation,

where A may not be module-finite over its center and we do not know very much

about the center itself. Fortunately, we are able to avoid localization, in the present

paper.
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For the remainder of this paper, A denotes a PID, and "module" means "finitely

generated module" unless otherwise stated. We want to show that every left A-

module U of finite length is uniquely presentable by every free module P by which

it can be presented, as in (0.4).

1. Stable unique presentability.  We begin by quoting [LR '74, 1.5].

1.1 LlFTINC AND STRAIGHTENING THEOREM. Consider a surjection of mod-

ules over any ring

(1.1.1) /: P = Pi © P2 © ■ • ■ 0 Pn -» U = Ui © U2 © • • • © Un

where P is projective and U/radU is semisimple (e.g. any module U of finite

length). Suppose that

(1.1.2) For each i there exist surjections: Pi -» Ui and Pn -» Ui.

Then the Pi can be isomorphically replaced in (1.1.1) to achieve f(Pi) = Ui for

every i ( "lifting"). Moreover, this replacement can be done in such a way that the

first n—1 restricted maps f : P» -» Ui become equivalent to n — 1 arbitrarily selected

surjections:   Pi -* U% ( "straightening").

The phrase "isomorphically replaced", in the theorem, means that the new P,- is

isomorphic to the old one. An immediate consequence of the theorem is

1.2 COROLLARY. Suppose that Un is uniquely presentable by Pn. Then U is

uniquely presentable by P.

One situation in which unique presentability is easily shown to hold is given in

[LR '74, 1.9].

1.3 LEMMA. LetT be a 2-sided ideal of any ring R, and let H be any noetherian

R-module.  Then any two surjections:   H -» H/TH are equivalent.

We now return to our PID A.

1.4 Stable Invariant Factor Theorem. Let K be a submodule of a free

A-module P. Suppose that P/K is unfaithful of finite length. Then for some s there

exist compatible decompositions

(1.3.1) Ps = Pi ©■■■©P„ and

(1.3.2) K3 = TxPi © • • • © TnPn        (Ti Ç ■ ■ ■ Ç r„)

with each Ti a 2-sided ideal of A and each Pi = A.

PROOF. The proof is the same as the proof of [GL '88, 3.3], with the following

minor changes. Since A is a PID, all projective A-modules are free, and their

uniform rank equals their rank as a free module. Moreover, the "genus" of a

projective module merely becomes its isomorphism class. In a number of places,

the preliminary results [GL '88, 3.1, 3.2] refer to a regular element ci of a central

subring R such that dU = 0. In all such cases, it suffices to take d to be a regular

element of R; and this always exists, by Goldie's theorem, because the annihilator

of the unfaithful module U is a 2-sided ideal of the prime ring A, hence is essential

as a left ideal.    D

We now obtain our desired stable unique presentability result.
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1.5 THEOREM. Let f:P-»Ubea presentation of a A-module of finite length.

Then, for some s, Us is uniquely presentable by Ps.

PROOF. We seek an integer s for which there exist decompositions Ps = ®"=1 P%

and Us = ®"=1 (7, with each Pz = A, each Ul cyclic, and Un = A/T for some 2-

sided ideal T of A. For then Un is uniquely presentable by P„ (Lemma 1.3), and

hence U is uniquely presentable by P (Corollary 1.2).

Let K = ker(/). It suffices to find an integer s and decompositions

n n

(1.5.1) Ps = 0Ap,    and    Ks=Ç$AdlPl
i=l i=l

such that T = Adn is a 2-sided ideal, for then U = ®¿ f(Apt) with f(Apn) — A/T.

We can suppose that P has rank r > 2, after replacing / by f2, if necessary.

Let K = ker(/).  Applying the diagonalization theorem mentioned in (0.1) to the

matrix of the inclusion map: K Ç P, we get a pair of decompositions

r r

(1.5.2) P = 0Ap,    and    K = ®AdlPi
¿=i i=i

where each di is a total divisor of d,_i (i > 1).  Since U has finite length and P

rank(P) = r, every di and p¿ is nonzero.

Let P' = ©¿jx Ap¿ and K' = ©¿^, Adtpi. Since every <¿¿ is a total divisor of

dj_i we have AdiA Ç Aci¿ for all i > 1. Therefore P'/K' is annihilated by di. Let

s be the integer obtained by applying the Stable Invariant Factor Theorem to the

unfaithful module P'/K'.

Since P = Api ©P' and K = AdiPi@K', the decompositions of (P')s and (K')s

provided by the Stable Invariant Factor Theorem yield the decomposition needed

in (1.5.1).    D

2. Reduction to unfaithful modules.

2.1 THEOREM. Suppose that every unfaithful A-module U of finite length is

uniquely presentable by every free module of rank > 2 that can be mapped onto U.

Then the same conclusion holds ifU is faithful (and of finite length).

PROOF. Let f-.P-* U be a presentation with ker(/) = K, where U is not

necessarily faithful. Choose a pair of decompositions, as in (1.5.2) with each di a

total divisor of ci¿_! (i > 1). This gives a pair of decompositions

n n

(2.1.1) -P = ®^    and    (7 = 0/7,
i=l i=l

with each P¿ = A and each /(P¿) = U¡. Moreover, since each di is a total divisor of

di-i the module U' = ®"=2 Ui is annihilated by di, hence is unfaithful.

Now suppose that P has rank > 3. Then, by hypothesis, U' is uniquely pre-

sentable by P' — ®"=2 Pi- Hence applying Corollary 1.2 to the presentation

(2.1.2) /: P = P1©P'-»f7 = t/i©<7',

shows that U is uniquely presented by P, as desired.

Unfortunately, this simple argument fails when n = 2 because P' then has rank 1.

The only way out seems to be to modify the proof of the Lifting and Straightening
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Theorem, which we do in the next lemma. To apply the lemma, recall that every

A-module of finite length is the direct sum of a completely faithful module and an

unfaithful module [ER '70, 3.9].    O

2.2 LEMMA. Let f: P -» U = V ®W be a presentation of a A-module, with P

free of rank 2, U of finite length, V completely faithful, andW unfaithful. Suppose

that W is uniquely presentable by P.  Then U is uniquely presentable by P.

PROOF. Let P = Apx ©Ap2. Since P can be mapped onto W, the diagonalization

argument in (1.5.2) gives a decomposition W = Atui © Aw2.

Recall from [LR '74, Lemma 1.11] that, over any ring, if S is a projective module

not of finite length and S can be mapped onto a module L of finite length, and C is

any completely faithful module of finite length, then S can be mapped onto C @L.

Applying this with S = A and L = 0, we see that A can be mapped onto V, say

V = Av. A second application of this lemma shows that A can be mapped onto

Av © Awi. Applying the Lifting and Straightening Theorem to the presentation

(2.2.1) /: P = Api ©Ap2 -» U = (Av © Aiui) © Au>2

we get a new decomposition P = Api © Ap2 such that f(Api) = Av © Awi and

f(Ap2) = Aw2. After a change of notation we get

(2.2.2) f(pi) = v + wi    and    f(p2) = w2.

Let irv and itw be the projection maps from P to Av and W respectively.

Now consider another presentation g: S -» X with 5 = P and X = U. We show

that / ~ g by obtaining decompositions / ~ /i © f2 and g ~ gi © g2 in which each

fi ~ 9i-
Since X = U, there is a decomposition A = Ay © Z with Ay = At; and Z = W.

Since we are assuming that W is uniquely presentable by P, we have

(2.2.3) (irwf:P^W)~(nzg:S^Z).

This yields decompositions S = Asi © As2 and Z = Azi © Az2 such that

(2.2.4) (ttw/: Ap, -» Aw,) ~ (irzg: As, -»• Azi)        (¿=1,2)

where each s, —> Zi and

(2.2.5) ann(ifi) = ann(2i) = (say) AT.

So we have ker(7Tw/ | Api) = Kpi and ker(7r^c7 | Asi) = Ksi.

Now we make a sequence of basis changes in S. The basis changes will be

elementary, replacing si by an expression of the form si + ts2 or replacing s2 by

s2 + tsi where t is an element of the annihilator T of Z. Taking t ET guarantees

that (2.2.4) still holds after the old s, is replaced by the new st, because trzg(si)

remains unchanged.

We have T jt 0 since Z is unfaithful. The following fact will be used repeatedly.

(2.2.6) Ty' = Ay'        (V</ E Ay).

Clearly Ty' C Ay'. If equality did not hold, then the nonzero module Ay'/Ty'

would be annihilated by the nonzero ideal T, contrary to complete faithfulness of

Ay.
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Our first claim is that there is a basis change s2 —► s2 + tsi that achieves

7Tj,c7(As2) = Ay. Applying (3) in the proof of the Building Lemma [LR, 1.3] to

the surjection iryg: As2 © Asi -» Ay gives a homomorphism ê: As2 —► Asi such

that nyg(l + ê)(As2) = Ay. We have "d(s2) = tsi for some t E A. We then have

Ay = A-Kyg(s2 + isi) as needed. Moreover, tnyg(si) E Ay so, by (2.2.6), we can

take t E T as claimed.

Since TTyg(As2) = Ay we can replace y by a different element of Ay to achieve

Kyg(s2) = y-

Next we claim that there is a basis change si —► si +ts2 that achieves nyg(si) =

0. For some t E A we have iryg(si) = —ty = —tnyg(s2) as needed. Again, by

(2.2.6), we can take t E T.

Now that we have "erased" the unknown image of Asi in Ay, we rebuild this

image to suit our needs.

Since Av = Ay, there is an element t E A such that Aty = Ay and ann(ty) =ann(t>).

Again we can take t ET. After replacing si by si + ts2 we have iryg(Asi) = Aty =

Ay.
After replacing y by ty we have 7ryc7(si) = y and ann(y) =ann(u) =(say) H.

Therefore, by (2.2.5),

ann(y + zi) = ann(y) n ann(zi ) = H (1K = ann(u + Wi).

Since g(si) = y + Z\ we now have ker(j | Asi) = (H C\ K)si and ker(/ | Api) =

(Hf)K)pi. Therefore

(2.2.7) (g | ASl) ~ (/ | APl).

We no longer need the image of As2 in Ay. So, by means of one more basis change

of the form s2 —► s2 + isi we erase it, replacing it with 0.

Setting i = 2 in (2.2.4), and observing that the projection maps it now have no

effect, we get (g | As2) ~ (/ | Ap2) which, together with (2.2.7), completes the

proof of the lemma.    D

3. Unfaithful case.

3.1 Notation.  Let /,g: P = An -» U be presentations of an unfaithful left A-

module of finite length, with ker(/) = K and ker(<7) = L.  We have TU = 0 for

some nonzero 2-sided ideal T of A. Let E(P) denote the endomorphism ring of P.

We define

(3.1.1)
hom(/, g) = {tp E E(P) \KrCL} = {pE E(P) | (3d E E(U))tpg = fê}.

In particular, we let hom(/, /) = E(f) = E. Note that hom(/, g) is a left E'-module.

Let T — Anx„. We write elements of P as rows. So every element of E(P) be-

comes right multiplication by a unique element of T, and we make the identification

E(P) = T. Thus E = E(f) is a subring of T. Let 9~ = Tnxn. Since TU = 0, we
have

(3.1.2) y Ç U    and   F Ç E.

In fact, ¿7" is a 2-sided ideal of both E and T.

For any A-module homomorphism h : S —► V we define the homomorphism / ©

h: P © S —* U © V by (p, s) —» (pf, sh). It therefore makes sense to speak of the

category div(/) of all direct summands of the maps fn (n — 1,2,... ).
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3.2 DRESS'S LEMMA. The functor hom(/,...) is a category equivalence be-

tween the div(/) and div(.E') = {finitely generated projective left E-modules}. In

particular, g ~ / if and only ifhom(f, g) = E as left E-modules.

PROOF. Dress's well-known observation [D '69, p. 985] is that, if F is a left mod-

ule over a ring R, then the functor hom(P,... ) is a category equivalence between

div(P) and div(E(F)), the inverse functor being F ®e(f) ['")•

Let T2(A) be the ring of 2 x 2 upper triangular matrices over A. In [GL '88,

1.8] a functor / —► M(f) is described that is a category equivalence between the

category of homomorphisms of left A-modules and a subcategory of the category of

left T2(A)-modules. (Actually, in that discussion, homomorphisms act on the left,

and lower triangular matrices are used.)

To obtain our lemma from Dress's original version, let F — M(f) and compose

the functor M(- • ■ ) in the previous paragraph with Dress's functor.    D

3.3 LEMMA.   EfST is a left and right artinian ring.

PROOF. Note that (by considering Morita equivalence) a ring R is artinian if

and only if, for some s, the matrix ring RSXs is artinian.

So it suffices to prove the lemma with E(fs) in place of E(f). Choose s such

that the Stable Invariant Functor Theorem 1.4 holds for K Ç P. After the change

of notation that replaces / by fs, the decomposition given by the Stable Invariant

Factor Theorem takes the form P = An and K = ®"=1 T where each T¿ is a

2-sided ideal of A containing T.

The subring E of A„xn consists of all matrices tp such that, for all (i,j), we have

Ti<Pij Q Tj. Since each T¿ is a 2-sided ideal, each subset Eij of E is therefore a

2-sided ideal of A containing T, and E = ]£V • Eij.

It follows that E is a finitely generated A-module on the left and on the right.

Hence E/J7" is a finitely generated left and right module over the artinian ring A/T.

In particular, E/£T is an artinian ring.    D

3.4 THEOREM. Any two presentations f,g:P = An-»U, where U is unfaithful

of finite length, and n > 2, are equivalent.

PROOF. By Theorem 1.5, Us is uniquely presentable by Ps for some s. Therefore

/s ~ g © /s_1- In particular, g E div(/). Applying the functor in Dress's Lemma,

we get an isomorphism of projective left .E-modules:

(3.4.1) ES = H®ES-1    where H = hom(f,g).

To complete the proof of the theorem, it now suffices to show E = H.

By (3.1.2) we can set H = H/J' and Ë = E/9~. We also set F = Y/3~.

Let A = A/T. Since free modules are projective, there is a natural identification

H = hom(/, g) where f,g:P = A -» U are the presentations of the A-module U

induced by / and g. Applying this to the situation / = g, we see that we can also

make the identification E = E(f). Since the ring A is a homomorphic image of a

PID, A is artinian, and therefore has 1 in its stable range. Over a ring with 1 in

its stable range, every module is uniquely presentable by every free module that

presents it, by [W '78, Theorem_4; or G '82, 3.1l_So / ~ g. Hence Ë = H as left

E-modules. In particular, H = Eä for some á E H. Since f ~ g, any such á is an
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element of E(P)* — Y , where * denotes "units of". We claim

(3.4.2) T = YH = YE.

Since H = Ëa we have H = 3~ + Ea. So Y H = Ta = (since a E T*) T. Since

both T and YH contain ¿7", the first equality in (3.4.2) follows. The second equality

follows from the first one by setting / = g.

Conversely, let ä E Hi)Y*. Then H — Eä. We claim

(3.4.3) H^EoâEË'Y*    (çf*).

The product E Y* makes sense if we reduce the factor in Y modulo the 2-sided

ideal 3~ before multiplying.

Suppose H ££ E. Then H = Eß for some ß E E. We have ß E Y* by (3.4.2).

Then H — Eß = Ea shows äß~x E E as desired. Conversely, suppose ä = tpß

with <p E E* and ß E Y*. Then H = Eä = Eß so H = Eß. (Note that both H
and E contain !T, and since ß E Y*, so does Eß.) Hence H = Eß = E.

Now we prove that H = E by verifying the right-hand side of (3.4.3).

Let a E HnY so H = Eä. Then A = (a, 1,1,..., 1) is an isomorphism:

E = H © E .In view of (3.4.1) we can apply the version of (3.4.3) that applies

to the presentation fs : Ps -» Us, getting

(3.4.4) A = (á,l,í,...,l)EGLs(E)GLs(Y),    say A = xy.

In what follows, we repeatedly use the following two facts about Kj. If a ring R

has m in its stable range, then the natural map: GLm(R) —* Ki(R) is a surjection,

and the kernel of the map: GLm+i(R) —* Ki(7?) is the subgroup generated by

elementary matrices.

Let vt, denote "natural image in K^A)". The PID A has Krull dimension 1,

therefore, by [S '77, 2.1] has 2 in its stable range. So v^y) = v>\(*f) for some

7 E GL2(A). Since P has rank > 2, we have GL2(A) Ç T^ so 7 E Y*. Let 1/

denote "natural image in Ki(E)". Since the artinian ring E has 1 in its stable

range, we have u'(x) = v'(tp) for some tp E E . Letting v denote "natural image

in Ki(r)", we get u(ä) = u(tp)u(^) = v(tp^) where we compute <pi by viewing 7

as a matrix over A, and reducing its entries modulo T.

Since 1 is in the stable range of Y, and Y consists of matrices of size at least

2x2 over A, we now have ä = tp^e where ë is a product of elementary matrices

over A, hence can be lifted to a unit e E Y*. The relation ä = tp ■ (7e) now shows,

by (3.4.3), that H =* E.    D
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