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ABSTRACT. Let N be the number of solutions (xi, ■ ■ ■ ,xn) of the equation

(1) CiZj1 + C2I22 "I-+ CnXnn = C

over the finite field Fq, where d,|(g — 1), c¡ e F* (»si,... ,n), and c S Fq. If

11 1

dl        ¿2 dn

for some positive integer b, we prove that qb\N. This result is an improvement

of the theorem that p\N obtained by B. Morlaye [7] and also by J. R. Joly [3].

1. Introduction. Let Fq be a finite field with q = pf elements, where p is

the characteristic of the field. Some attention has been given to the divisibility

properties of the number N of solutions of an equation over Fq. The basic idea of

this research originated from Lebesgue [5], who first noted that

N(f(x) = 0)= ^(1 -f(c)"-1)    (modp)
c€F„

where f(x) E Fq[x]. After that, it was Warning [11] who first arrived at the

conclusion that p\N(f(xi,... ,xn) = 0) for /(xi,...,xn) G Fq[xi,... ,xn] with

deg(/) < n, and generalized this result to a system of polynomials. In 1962, J.

Ax [1] found a major improvement of Warning's theorem which, in a sense, is

best possible. He proved that if 6 is the largest integer such that 6 < n/d, then

qb\N(f(xi,...,xn) = 0) for any polynomial /(xi,...,xn) G Fg[xi,...,xn] with

deg(/) — d. In 1971, Ax's theorem was generalized to systems of equations by

N. M. Katz [4]. This generalization, in a sense, is also best possible. A more

elementary proof of Katz's theorem can be found in [10]. Therefore, the general

study of the divisibility properties of the number A'' by powers of p may have come

to an end.

For special kinds of equations, however, further results about divisibility of N by

p can still be obtained by using arithmetic properties of multinomial coefficients.

One such result is a theorem of Morlaye [7] and Joly [3] (see also [6, pp. 297-298]),

which shows that plA^, the number of solutions to the diagonal equation (1) over

Fq, provided that 1/di + l/d2 -I-h l/dn > 1.

In this paper, using some ideas of Ax [1], we shall improve the theorem of Morlaye

and Joly, and obtain a theorem with the same quality as Ax's theorem. That is,
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we have

THEOREM 1. Let n be the number of solutions of the diagonal equation (1) over

Fq. If there is a positive integer b such that

11 1
-r + -r + --- + -r>b>l,
di     d2 d„

then
N = 0    (modqb).

Note that if di = d2 = ■ ■ ■ = d„ = d, a divisor of (q — 1), then Theorem 1 reduces

to a special case of Ax's theorem.

2. An auxiliary lemma. For convenience, first we introduce a lemma which

is important in the proof of Theorem 1.

LEMMA 2. Let di\(q — 1) (i = l,...,n), q = pf, and ][^ l/d¿ > b, where
b is a nonnegative integer. For any li (1 < U < di — 1), (i = l,...,n) with

Y^h/di = 0 (modi), suppose

——k = ai0 + aup-\-\-a^f_i)pf~ï, 0 < Cty < p,

and let

(2) S = ¿¿a*.
î=lj=0

ThenS>f(b + l)(p-l).

PROOF. For any integers j and r with j = r (mod/) and 0 < r < / - 1, we

define atJ = a¿r. Since

- 1        /_1

j     n = / t O-ijy i
i 3=0

it follows that, letting (x)d denote the smallest nonnegative residue of x modd, we

have
/—i

^(¿iPfc)d, = (S~^P* )       = J2 aHi-QP*'
1 >    "' '9-1       ¿=o

Thus

n    f-l , /   n    /—1 v ..

t=l fc=0        * S=l k=0       ' y

On the other hand,

¿=i ¿=i ¿=i

and

w E^E¿>>-i=i ¿=i
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Therefore, J2(liPk)d,/di is integral and

(kpk)c

ai
t'=l

Now, (3) gives

5>(p-i)EE^>(p-i)/(hi).
fc=0¿=l *

Lemma 2 is proved.

3. Proof of Theorem 1. If c ^ 0, we have the identity

N(ciXdl +... + CnXàn _c)

= -^-[A(Clxí+ + • • • + cnxdn" - cxq-+\ = 0) - A(Clxf + • • • + <*«*• = 0)].

Since 1/di + • • ■ + l/dn + l/(q — 1) > 1/di + • • • + l/d„, it is sufficient to prove

Theorem 1 for c = 0. In the following, we let N denote the number of solutions of

the equation

cixf + c2x%2 + ■■■ + cnxdnn = 0

over Fq, where c, E F*.

It is well known that N can be evaluated by means of Gauss sums. Take a

multiplicative character \ of Fq of order (q - 1) and put x% = x'9_1^di • Then Xi is

a multiplicative character of Fq of order d, (i = 1,..., n). From [6, pp. 293-294],

we see that

(6)       N = ^-1 + 1^1       ¿2      XÁCir3í-.-Xn(cn)-3"G(xJi1)---G(xi"),
(¿J.in)€T

where T is the set of all n-tuples (ji,... ,jn) E Zn such that 1 < j% < d% — 1 for

1 < i < n and J2li/di = 0 (mod 1), and the Gauss sums are defined by

G(X3) = £ XJ(c)etrf Fp(c)(27ri/p)

c€FQ

(6) can be written as

(7) ATss^-l + lzi       y      x(ci)-i{q-1)/di)jl
q *—*

Uu-,3n)€T

x(Cny{(l-V/dn)]nQ{x((q--i)/di)3i ) . . . Q(x((q-l)/d„)3ny

IfO < a < q—1, write a = J2Í=o aiP% with 0 < a¿ < p and define a (a) = 2i=o a*-

Suppose np = 1 — e27Tt'p; then Stickelberger's congruence [2, p. 212] gives

G(x((«-D/*)*) = 0    (mod??*1),

where A, = a(((q - l)/dl)jl).

Since np~x = pe, where £ is a unit of Q(e2lTl/p), from (7) we deduce that

(8) N-qn-l=0    (modA
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where

According to Lemma 2,

¿>(^^)=S>(6 + l)/(p-l).
»=i    ^     l      '

This and (8) together give

N-qn-1=0    (modrib/(p-1'>).

That is,

N-qn~1=0    (mod?6).

Clearly, b < n — 1, and so A = 0 (mod g6). The proof is complete.

Observing our proof of Lemma 2 and Theorem 1, it is not hard to prove the

following better result for equation (1) with c — 0. That is,

THEOREM 3. Let 6*(di,...,dn) be the least positive integer represented by

23™=o h/di (1 < li < di — 1) if there is such an integer; otherwise, let b*(di,... ,dn)

— n — 1.  Then for equation (1) with c — 0, we have N = 0 (modqb _1).

The fact that 6* — 1 > 6 can be easily proved. Thus, Theorem 3 is in general

stronger than Theorem 1.

The above discussion suggests that it would be of interest to determine

b*(di,... ,dn). In an earlier paper, we gave a necessary and sufficient condition for

6*(di,... ,dn) = n — 1 (the maximum value of 6*); see [9].

The author is grateful to Professor Koblitz, who suggested some comments and

corrections.
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