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ANALYTIC FUNCTIONS
WITH RECTIFIABLE RADIAL IMAGES

MARVIN ORTEL AND WALTER SCHNEIDER

(Communicated by Irwin Kra)

ABSTRACT. We give a simple sufficient condition for an analytic function in

the unit disk to have a radial image of finite length.

1. Introduction. If / is an analytic function defined on the unit disk D =

{z EC: \z\ < 1}, we define the radial variation function of f,

V(/,-):[0,2ir)-[0,oo)U{oo},

by the rule

V(f,9)= [      \f'(reie)\dr,    all 9 € (0,2w).

In the present paper we prove that V(f, 6) is finite for at least one 6 E [0,27r) if /

is of moderate growth in the unit disk and /' is bounded on some arc tending to

the boundary of D.

THEOREM l.   Suppose f is analytic in D, p E [0,1) and

snp\f(z)\(l-\z\)11 <oo.
zED

In addition, suppose 7: [0,1) —> D is continuous and one-to-one, linitji |7(f)| = 1,

and

(1) sup   |/'(7(i))|<co.
te[o,i)

Then there exists 6 E [0,27r) such that V(f,6) < 00.

Theorem 1 is proved in §3, by means of the harmonic majorization discussed in

§2. In §4 we present a corollary directed to an open question concerning the radial

images of bounded functions in the disk.

2. Majorization. The following lemma shows how the radial growth of a

function which is subharmonic in the upper half plane is restricted in the case that

it is bounded on a curve terminating at the origin.
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LEMMA l.   Suppose h, T, and £ meet the following conditions:

(1) h is subharmonic in H+ = {z E C: Im 2 > 0} and £ E (0, 00).

(2) h(x + iy) < log ± if x + iy E H+ and x2 + y2 < 1.

(3) T: [0,1) —> H+ is continuous and one-to-one, T(0) = i, limtji T(t) = 0, and

\T(t)\ < 1 for allt E [0,1).
(4) sup1€[0,i) h(T(t)) < 00.

Then we have

(5) supye{0A][h(iy) + (± +£)logy] < 00.

PROOF. Choose M E (0,00), a E (tt/2, tt) so that 7r/2a < 1/2 + e, h(T(t)) < M

for all i G [0,1), and h(eie) < M for all 6 E [tt - a, a). Finally, select 6 E (0,oo).

We shall prove

(6) /i(i2/o)<M + 2<5 + ^log^- + ^log-,
2a       sm a      2a       i/o

all 2/0 e (0,1].

Note that (6) implies (5), since 7r/2a < 1/2-fe, and both i/o and ¿ are arbitrary.

We now prove (6). Corresponding to fixed yo and ¿1 choose numbers p and d

such that

0 < d < p < yo,       2       2 < Ô,

(7) p 1
- > log-    for all y G (0,dl.
2/ 2/

Also, introduce the following sets which depend on the chosen number d:

Ti = {del6 : 0 < d < n} U {reta : d < r < 1} U {e20 : tt/2 < 6» < a},

T2 = {del6 :0<6<tv}U {reî(7r"a) : d < r < 1} U {el$ : n - a < 6 < tt/2},

t*sinf{í€[0,l) : |r(i)|=d},

7* = {r(i):0<i<i*},

2? = {z E C : Ti U 7* separates z from 00},

31 = {z E C : T2 U 7* separates z from 00}.

We claim iy0 G Jz? U3? U 7*. This follows from Janisewski's Theorem [1, p. 362],

since the set

(Ti U 7*) il (r2 U 7*) = {de10 : 0 < 9 < w} U 7*

is connected and Ti U T2 separates iyo from 00.

We may therefore assume iyo E Sf: indeed, (6) is immediate if iyo E 7*, and if

¿i/o G ¿% we merely replace h and T by their reflections in the imaginary axis.

Assuming that iyo E Sf, let Í2 denote the set of complex numbers which may

be connected to iyo by a path not crossing Fi U 7*. By definition of fi, it follows

that Bdry fi c Ti U 7* (here Bdry fi denotes the C-boundary of Q). Moreover, if

we set m = min[d • sin(a), infjg^- Im z], we have

U C S = {z € C: d < \z\ < 1 and Im z > m}.

Indeed, since m > 0, any point outside S either lies on Ti or may be connected

to 00 without crossing Ti U 7*.  So, if z G f2 and z ^ S, we could connect iyo to
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z and 0 to oo without crossing Ti U 7*: but this contradicts the assumption that

iyo G Sf. Therefore, 0 is a compact subset of H+, O C S, and

BdryQc (Ti U 7*) - {d, -d}.

We may now complete the proof. For z = x + iy E H+ define

[Zs

i(z) = (M + 6) +( log

V

2 sin

+

1_A /arg,

ûnaj \   a

y

r l(x + d)2 + y2      (x-d)2+y2\ '

Since (log |2|)(argz) = ^ Im(log2)2 in H+, we see that u is harmonic in H+. Note

that each term of u is nonnegative on Bdry fi since \z\ < 1 for all z E ü C 5. Now,

if x2 + y2 = d2 and y > 0, we have

iy) > P
y

(x + df !)-
+ V

(x - d)2 + y2

= - > log - > h(x + iy),
y        y

by (7) and our hypotheses. If x + iy = reia and d < r < 1, then

u(x + iy) > I log ~)(-
¡may \a

log - > h(x + iy).
V

If z  E  7* or z  =  eie with ir/2  <  9  <  a,  then u(z)   >  M  >  h(z).    Since

Bdry Q c Fi U 7* - {d, — d}, we have shown

h(z) - u(z) < 0    for all z E Bdry Ü.

Since h — u is subharmonic in H+ and Q is a compact subset of H+, we conclude

h(z) - u(z) < 0    for all z E Ci.

Since iyo G H we have

22/0
h(ivo) < u(iyo) (M + 6)+ (log-h log-

2/0 sin a 2a
+ P

d2 Vol

Now (6) follows from the setup in (7).

3. Proof of Theorem 1. From the general hypotheses it follows that

supzeD\f'(z)\(l — \z\)ß+1 < 00. Now consider hypothesis (1). By theorems of

G. MacLane [2, Theorem 1 and Theorem 14 in G. Piranian's review], there is a

dense set of points on the unit circle which are endpoints of asymptotic paths of

/' (possibly corresponding to infinite limits). This fact allows us to assume that

limtf 17(f) exists. For otherwise there is a nonempty open interval / C (0,27r)

such that for each 0 E I there is a corresponding sequence (f„) from [0,1) with

lim„joo l(tn) = el0. By the existence of asymptotic paths of /', we may choose 9q

and 9\ G /, and a Jordan arc a: (0,1) ->ö such that

„«0ilim<7(i) = e<flo,
no

lim/Xi)) =a,
no "

lim cr(t) = el
tii

\un f'(a(t)) = b,
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where a and b are elements of the extended complex plane. By elementary topology

we see that for each e E (0,1) we have

{7(f) : 1 - s < t < 1} H {a(t) : 0 < i < 1} t¿ 0.

Since lim¿n |7(i)| = 1 and supier01\ |/'(7(f))| < 00, we may conclude that both

a and b are (finite) complex numbers. Hence, if limit 1 7(f) does not exist we may

replace 7 by the parametric arc

1+f
f G [0,1).

We may therefore assume, without loss of generality, that limtf 1 7(f) = 1, 7(0) = 0,

andRe7(i) > 0, all tE [0,1).

Since sup2eD |/'(z)|(l — |2|)M+1 < 00 it is easy to show that

sup
z&H +

l*l<i

/'
i + z

2i

i + z)
(Im z)p+i < CO.

Hence, without loss of generality (multiply / by a positive constant), we assume

/'
2t

j + z

Define now

Hz)

(i + zY
<

H+l

if z = x + iy E H+ and \z\ < 1.

r(i) = i

1

p + i
loe /'

í-l(t)

1+7(0'

i — z

l + z

i G [0,1)

2%

(i + z)
zEH+.

Then h, T meet the conditions of Lemma 1 because of our simplifying assumptions.

If £ E (0,00) we conclude

sup
Sf€(0,l]

and hence that

1

[P + I
log

sup
»6(0,1]

/'

/'

1-2/

1 + 2/

1-2/

1 + 2/

(1 + 2/)2

2y(l/2+e)(l+ß)

(1+2/)2

+ {k+e)\ogy < 00

< CO.

Since p E [0,1) we may choose e so that (i + e)(p + 1) < 1 and obtain

f      \f'(r)\dr=[       f'f1—^
(l + 2/):

dy < 00.

This establishes Theorem 1.

4. Corollary for bounded functions. Although the question of the rectifia-

bility of radial images originates in Rudin's paper [3], it is still unknown whether

all the radial images of a bounded analytic function / can be of infinite length.

However, by Corollary 1 (stated below), this is impossible if /' has less than the

maximal density of zeros possible for the derivative of a bounded analytic function

in the disk.
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To see this, define A(f') = {a G D: f'(a) — 0} whenever / is an analytic function

in the disk. Then, if / is bounded, we have

J2   (l-|a|)1+£ <co,    foralle>0
aeA(f')

(see [4, pp.  204-205]).  By Corollary 1, if V(f,6) = co for all 9 E [0,2tt) it must
actually be the case that ^ZaeAtf,-¡(í — \a\) = co.

COROLLARY l. Suppose f is analytic in D, J2aeA<f')(^ ~ \a\) < oc, p E [0,1),

andsupzeD \f(z)\(l — \z\),i < co. Then there exists 9 G [0, n) such thatV(f,9) < co.

PROOF. Let B denote the Blaschke product with zero set A and set g = f'/B.

Since log \g\ is harmonic in D and D is simply connected, there is a simple para-

metric arc 7: [0,1) —» D such that 7(0) = 0, limtíi |7(í)| = 1, and log |¡?(7(í))| =

log |ff(0)| for all i G [0,1). Thus |/'(7(i))| < |ff(0)| for all t. Now we apply Theorem
1.
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