ANALYTIC FUNCTIONS WITH RECTIFIABLE RADIAL IMAGES
 MARVIN ORTEL AND WALTER SCHNEIDER
 (Communicated by Irwin Kra)

AbSTRACT. We give a simple sufficient condition for an analytic function in

 the unit disk to have a radial image of finite length.1. Introduction. If f is an analytic function defined on the unit disk $D \equiv$ $\{z \in \mathbf{C}:|z|<1\}$, we define the radial variation function of f,

$$
V(f, \cdot):[0,2 \pi) \rightarrow[0, \infty) \cup\{\infty\},
$$

by the rule

$$
V(f, \theta) \equiv \int_{[0,1)}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d r, \quad \text { all } \theta \in[0,2 \pi)
$$

In the present paper we prove that $V(f, \theta)$ is finite for at least one $\theta \in[0,2 \pi)$ if f is of moderate growth in the unit disk and f^{\prime} is bounded on some arc tending to the boundary of D.

Theorem 1. Suppose f is analytic in $D, \mu \in[0,1)$ and

$$
\sup _{z \in D}|f(z)|(1-|z|)^{\mu}<\infty
$$

In addition, suppose $\gamma:[0,1) \rightarrow D$ is continuous and one-to-one, $\lim _{t \uparrow 1}|\gamma(t)|=1$, and

$$
\begin{equation*}
\sup _{t \in[0,1)}\left|f^{\prime}(\gamma(t))\right|<\infty \tag{1}
\end{equation*}
$$

Then there exists $\theta \in[0,2 \pi)$ such that $V(f, \theta)<\infty$.
Theorem 1 is proved in $\S 3$, by means of the harmonic majorization discussed in $\S 2$. In $\S 4$ we present a corollary directed to an open question concerning the radial images of bounded functions in the disk.
2. Majorization. The following lemma shows how the radial growth of a function which is subharmonic in the upper half plane is restricted in the case that it is bounded on a curve terminating at the origin.

Received by the editors October 18, 1986 and, in revised form, April 14, 1987.
1980 Mathematics Subject Classification (1985 Revision). Primary 30D50; Secondary 30C85, 30B30.

The research was supported by the Natural Sciences and Engineering Research Council of Canada under grant OGPIN-016.

Lemma 1. Suppose h, Γ, and ε meet the following conditions:
(1) h is subharmonic in $H^{+} \equiv\{z \in \mathbf{C}: \operatorname{Im} z>0\}$ and $\varepsilon \in(0, \infty)$.
(2) $h(x+i y) \leq \log \frac{1}{y}$ if $x+i y \in H^{+}$and $x^{2}+y^{2} \leq 1$.
(3) $\Gamma:[0,1) \rightarrow H^{+}$is continuous and one-to-one, $\Gamma(0)=i, \lim _{t \uparrow 1} \Gamma(t)=0$, and $|\Gamma(t)| \leq 1$ for all $t \in[0,1)$.
(4) $\sup _{t \in[0,1)} h(\Gamma(t))<\infty$.

Then we have
(5) $\sup _{y \in(0,1]}\left[h(i y)+\left(\frac{1}{2}+\varepsilon\right) \log y\right]<\infty$.

Proof. Choose $M \in(0, \infty), \alpha \in(\pi / 2, \pi)$ so that $\pi / 2 \alpha<1 / 2+\varepsilon, h(\Gamma(t)) \leq M$ for all $t \in[0,1)$, and $h\left(e^{i \theta}\right) \leq M$ for all $\theta \in[\pi-\alpha, \alpha]$. Finally, select $\delta \in(0, \infty)$. We shall prove

$$
\begin{equation*}
h\left(i y_{0}\right) \leq M+2 \delta+\frac{\pi}{2 \alpha} \log \frac{1}{\sin \alpha}+\frac{\pi}{2 \alpha} \log \frac{1}{y_{0}}, \tag{6}
\end{equation*}
$$

all $y_{0} \in(0,1]$.
Note that (6) implies (5), since $\pi / 2 \alpha<1 / 2+\varepsilon$, and both y_{0} and δ are arbitrary.
We now prove (6). Corresponding to fixed y_{0} and δ, choose numbers ρ and d such that

$$
\begin{gather*}
0<d<\rho<y_{0}, \quad \frac{2 \rho y_{0}}{d^{2}+y_{0}^{2}} \leq \delta \tag{7}\\
\frac{\rho}{y}>\log \frac{1}{y} \quad \text { for all } y \in(0, d]
\end{gather*}
$$

Also, introduce the following sets which depend on the chosen number d :

$$
\begin{aligned}
\Gamma_{1} & \equiv\left\{d e^{i \theta}: 0 \leq \theta \leq \pi\right\} \cup\left\{r e^{i \alpha}: d \leq r \leq 1\right\} \cup\left\{e^{i \theta}: \pi / 2 \leq \theta \leq \alpha\right\} \\
\Gamma_{2} & \equiv\left\{d e^{i \theta}: 0 \leq \theta \leq \pi\right\} \cup\left\{r e^{i(\pi-\alpha)}: d \leq r \leq 1\right\} \cup\left\{e^{i \theta}: \pi-\alpha \leq \theta \leq \pi / 2\right\}, \\
t^{*} & \equiv \inf \{t \in[0,1):|\Gamma(t)|=d\}, \\
\gamma^{*} & \equiv\left\{\Gamma(t): 0 \leq t \leq t^{*}\right\}, \\
\mathscr{L} & \equiv\left\{z \in \mathbf{C}: \Gamma_{1} \cup \gamma^{*} \text { separates } z \text { from } \infty\right\}, \\
\mathscr{R} & \equiv\left\{z \in \mathbf{C}: \Gamma_{2} \cup \gamma^{*} \text { separates } z \text { from } \infty\right\} .
\end{aligned}
$$

We claim $i y_{0} \in \mathscr{L} \cup \mathscr{R} \cup \gamma^{*}$. This follows from Janisewski's Theorem [1, p. 362], since the set

$$
\left(\Gamma_{1} \cup \gamma^{*}\right) \cap\left(\Gamma_{2} \cup \gamma^{*}\right)=\left\{d e^{i \theta}: 0 \leq \theta \leq \pi\right\} \cup \gamma^{*}
$$

is connected and $\Gamma_{1} \cup \Gamma_{2}$ separates $i y_{0}$ from ∞.
We may therefore assume $i y_{0} \in \mathscr{L}$: indeed, (6) is immediate if $i y_{0} \in \gamma^{*}$, and if $i y_{0} \in \mathscr{R}$ we merely replace h and Γ by their reflections in the imaginary axis.

Assuming that $i y_{0} \in \mathscr{L}$, let Ω denote the set of complex numbers which may be connected to $i y_{0}$ by a path not crossing $\Gamma_{1} \cup \gamma^{*}$. By definition of Ω, it follows that Bdry $\Omega \subset \Gamma_{1} \cup \gamma^{*}$ (here Bdry Ω denotes the C-boundary of Ω). Moreover, if we set $m \equiv \min \left[d \cdot \sin (\alpha), \inf _{z \in \gamma^{*}} \operatorname{Im} z\right]$, we have

$$
\bar{\Omega} \subset \mathbf{S} \equiv\{z \in \mathbf{C}: d \leq|z| \leq 1 \text { and } \operatorname{Im} z \geq m\}
$$

Indeed, since $m>0$, any point outside S either lies on Γ_{1} or may be connected to ∞ without crossing $\Gamma_{1} \cup \gamma^{*}$. So, if $z \in \Omega$ and $z \notin S$, we could connect iyo to
z and z to ∞ without crossing $\Gamma_{1} \cup \gamma^{*}$: but this contradicts the assumption that $i y_{0} \in \mathscr{L}$. Therefore, $\bar{\Omega}$ is a compact subset of $H^{+}, \bar{\Omega} \subset S$, and

$$
\operatorname{Bdry} \Omega \subset\left(\Gamma_{1} \cup \gamma^{*}\right)-\{d,-d\} .
$$

We may now complete the proof. For $z=x+i y \in H^{+}$define

$$
\begin{aligned}
u(z) \equiv & (M+\delta)+\left(\log \frac{1}{|z| \sin \alpha}\right)\left(\frac{\arg z}{\alpha}\right) \\
& +\rho\left[\frac{y}{(x+d)^{2}+y^{2}}+\frac{y}{(x-d)^{2}+y^{2}}\right]
\end{aligned}
$$

Since $(\log |z|)(\arg z)=\frac{1}{2} \operatorname{Im}(\log z)^{2}$ in H^{+}, we see that u is harmonic in H^{+}. Note that each term of u is nonnegative on Bdry Ω since $|z| \leq 1$ for all $z \in \bar{\Omega} \subset S$. Now, if $x^{2}+y^{2}=d^{2}$ and $y>0$, we have

$$
\begin{aligned}
u(x+i y) & >\rho\left[\frac{y}{(x+d)^{2}+y^{2}}+\frac{y}{(x-d)^{2}+y^{2}}\right] \\
& =\frac{\rho}{y}>\log \frac{1}{y} \geq h(x+i y)
\end{aligned}
$$

by (7) and our hypotheses. If $x+i y=r e^{i \alpha}$ and $d \leq r \leq 1$, then

$$
u(x+i y) \geq\left(\log \frac{1}{r \sin \alpha}\right)\left(\frac{\alpha}{\alpha}\right)=\log \frac{1}{y} \geq h(x+i y)
$$

If $z \in \gamma^{*}$ or $z=e^{i \theta}$ with $\pi / 2 \leq \theta \leq \alpha$, then $u(z)>M \geq h(z)$. Since Bdry $\Omega \subset \Gamma_{1} \cup \gamma^{*}-\{d,-d\}$, we have shown

$$
h(z)-u(z) \leq 0 \quad \text { for all } z \in \operatorname{Bdry} \Omega .
$$

Since $h-u$ is subharmonic in H^{+}and $\bar{\Omega}$ is a compact subset of H^{+}, we conclude

$$
h(z)-u(z) \leq 0 \quad \text { for all } z \in \Omega .
$$

Since $i y_{0} \in \Omega$ we have

$$
h\left(i y_{0}\right) \leq u\left(i y_{0}\right)=(M+\delta)+\left(\log \frac{1}{y_{0}}+\log \frac{1}{\sin \alpha}\right) \cdot \frac{\pi}{2 \alpha}+\rho\left[\frac{2 y_{0}}{d^{2}+y_{0}^{2}}\right] .
$$

Now (6) follows from the setup in (7).
3. Proof of Theorem 1. From the general hypotheses it follows that $\sup _{z \in D}\left|f^{\prime}(z)\right|(1-|z|)^{\mu+1}<\infty$. Now consider hypothesis (1). By theorems of G. MacLane [2, Theorem 1 and Theorem 14 in G. Piranian's review], there is a dense set of points on the unit circle which are endpoints of asymptotic paths of f^{\prime} (possibly corresponding to infinite limits). This fact allows us to assume that $\lim _{t \uparrow 1} \gamma(t)$ exists. For otherwise there is a nonempty open interval $I \subset(0,2 \pi)$ such that for each $\theta \in I$ there is a corresponding sequence $\left(t_{n}\right)$ from $[0,1)$ with $\lim _{n \dagger \infty} \gamma\left(t_{n}\right)=e^{i \theta}$. By the existence of asymptotic paths of f^{\prime}, we may choose θ_{0} and $\theta_{1} \in I$, and a Jordan arc $\sigma:(0,1) \rightarrow D$ such that

$$
\begin{aligned}
& \lim _{t \downarrow 0} \sigma(t)=e^{i \theta_{0}}, \quad \lim _{t \uparrow 1} \sigma(t)=e^{i \theta_{1}}, \\
& \lim _{t \downarrow 0} f^{\prime}(\sigma(t))=a, \quad \lim _{t \uparrow 1} f^{\prime}(\sigma(t))=b,
\end{aligned}
$$

where a and b are elements of the extended complex plane. By elementary topology we see that for each $\varepsilon \in(0,1)$ we have

$$
\{\gamma(t): 1-\varepsilon<t<1\} \cap\{\sigma(t): 0<t<1\} \neq \varnothing
$$

Since $\lim _{t \uparrow 1}|\gamma(t)|=1$ and $\sup _{t \in[0,1)}\left|f^{\prime}(\gamma(t))\right|<\infty$, we may conclude that both a and b are (finite) complex numbers. Hence, if $\lim _{t \uparrow 1} \gamma(t)$ does not exist we may replace γ by the parametric arc

$$
t \rightarrow \sigma\left(\frac{1+t}{2}\right), \quad t \in[0,1)
$$

We may therefore assume, without loss of generality, that $\lim _{t \uparrow 1} \gamma(t)=1, \gamma(0)=0$, and $\operatorname{Re} \gamma(t) \geq 0$, all $t \in[0,1)$.

Since $\sup _{z \in D}\left|f^{\prime}(z)\right|(1-|z|)^{\mu+1}<\infty$ it is easy to show that

$$
\sup _{\substack{z \in H^{+} \\|z| \leq 1}}\left|f^{\prime}\left(\frac{i-z}{i+z}\right) \cdot \frac{2 i}{(i+z)^{2}}\right|(\operatorname{Im} z)^{\mu+1}<\infty .
$$

Hence, without loss of generality (multiply f by a positive constant), we assume

$$
\left|f^{\prime}\left(\frac{i-z}{i+z}\right) \cdot \frac{2 i}{(i+z)^{2}}\right|<\left(\frac{1}{y}\right)^{\mu+1} \quad \text { if } z \equiv x+i y \in H^{+} \text {and }|z| \leq 1
$$

Define now

$$
\begin{gathered}
\Gamma(t) \equiv i \frac{1-\gamma(t)}{1+\gamma(t)}, \quad t \in[0,1), \\
h(z) \equiv \frac{1}{\mu+1} \log \left|f^{\prime}\left(\frac{i-z}{i+z}\right) \cdot \frac{2 i}{(i+z)^{2}}\right|, \quad z \in H^{+} .
\end{gathered}
$$

Then h, Γ meet the conditions of Lemma 1 because of our simplifying assumptions. If $\varepsilon \in(0, \infty)$ we conclude

$$
\sup _{y \in(0,1]}\left[\frac{1}{\mu+1} \log \left|f^{\prime}\left(\frac{1-y}{1+y}\right) \cdot \frac{2}{(1+y)^{2}}\right|+\left(\frac{1}{2}+\varepsilon\right) \log y\right]<\infty
$$

and hence that

$$
\sup _{y \in(0,1]}\left|f^{\prime}\left(\frac{1-y}{1+y}\right)\right| \frac{2 y^{(1 / 2+\varepsilon)(1+\mu)}}{(1+y)^{2}}<\infty .
$$

Since $\mu \in[0,1)$ we may choose ε so that $\left(\frac{1}{2}+\varepsilon\right)(\mu+1)<1$ and obtain

$$
\int_{[0,1)}\left|f^{\prime}(r)\right| d r=\int_{(0,1]}\left|f^{\prime}\left(\frac{1-y}{1+y}\right)\right| \cdot \frac{2}{(1+y)^{2}} d y<\infty .
$$

This establishes Theorem 1.
4. Corollary for bounded functions. Although the question of the rectifiability of radial images originates in Rudin's paper [3], it is still unknown whether all the radial images of a bounded analytic function f can be of infinite length. However, by Corollary 1 (stated below), this is impossible if f^{\prime} has less than the maximal density of zeros possible for the derivative of a bounded analytic function in the disk.

To see this, define $A\left(f^{\prime}\right) \equiv\left\{a \in D: f^{\prime}(a)=0\right\}$ whenever f is an analytic function in the disk. Then, if f is bounded, we have

$$
\sum_{a \in A\left(f^{\prime}\right)}(1-|a|)^{1+\varepsilon}<\infty, \quad \text { for all } \varepsilon>0
$$

(see [4, pp. 204-205]). By Corollary 1 , if $V(f, \theta)=\infty$ for all $\theta \in[0,2 \pi)$ it must actually be the case that $\sum_{a \in A\left(f^{\prime}\right)}(1-|a|)=\infty$.

COROLLARY 1. Suppose f is analytic in $D, \sum_{a \in A\left(f^{\prime}\right)}(1-|a|)<\infty, \mu \in[0,1)$, and $\sup _{z \in D}|f(z)|(1-|z|)^{\mu}<\infty$. Then there exists $\theta \in[0, \pi)$ such that $V(f, \theta)<\infty$.

Proof. Let B denote the Blaschke product with zero set A and set $g \equiv f^{\prime} / B$. Since $\log |g|$ is harmonic in D and D is simply connected, there is a simple parametric arc $\gamma:[0,1) \rightarrow D$ such that $\gamma(0)=0, \lim _{t \uparrow 1}|\gamma(t)|=1$, and $\log |g(\gamma(t))|=$ $\log |g(0)|$ for all $t \in[0,1)$. Thus $\left|f^{\prime}(\gamma(t))\right| \leq|g(0)|$ for all t. Now we apply Theorem 1.

References

1. J. Dugundji, Topology, Allyn and Bacon, 1966.
2. G. R. MacLane, Asymptotic values of holomorphic functions, Rice Univ. Stud. 49 (1963).
3. W. Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235-242.
4. M. Tsuji, Potential theory in modern function theory, Maruzen, 1959.

Department of Mathematics, University of Hawail, Honolulu, Hawail 96822
Department of Mathematics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

