ANALYTIC FUNCTIONS WITH RECTIFIABLE RADIAL IMAGES

MARVIN ORTEL AND WALTER SCHNEIDER

(Communicated by Irwin Kra)

ABSTRACT. We give a simple sufficient condition for an analytic function in the unit disk to have a radial image of finite length.

1. Introduction. If f is an analytic function defined on the unit disk $D \equiv \{z \in \mathbb{C} : |z| < 1\}$, we define the radial variation function of f,

$$V(f,\cdot)\colon [0,2\pi)\to [0,\infty)\cup \{\infty\},$$

by the rule

$$V(f,\theta) \equiv \int_{[0,1)} |f'(re^{i\theta})| dr, \quad ext{all } \theta \in [0,2\pi).$$

In the present paper we prove that $V(f,\theta)$ is finite for at least one $\theta \in [0,2\pi)$ if f is of moderate growth in the unit disk and f' is bounded on some arc tending to the boundary of D.

THEOREM 1. Suppose f is analytic in D, $\mu \in [0,1)$ and

$$\sup_{z\in D}|f(z)|(1-|z|)^{\mu}<\infty.$$

In addition, suppose $\gamma \colon [0,1) \to D$ is continuous and one-to-one, $\lim_{t \uparrow 1} |\gamma(t)| = 1$, and

(1)
$$\sup_{t \in [0,1)} |f'(\gamma(t))| < \infty.$$

Then there exists $\theta \in [0, 2\pi)$ such that $V(f, \theta) < \infty$.

Theorem 1 is proved in §3, by means of the harmonic majorization discussed in §2. In §4 we present a corollary directed to an open question concerning the radial images of bounded functions in the disk.

2. Majorization. The following lemma shows how the *radial* growth of a function which is subharmonic in the upper half plane is *restricted* in the case that it is *bounded* on a curve terminating at the origin.

Received by the editors October 18, 1986 and, in revised form, April 14, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 30D50; Secondary 30C85, 30B30.

The research was supported by the Natural Sciences and Engineering Research Council of Canada under grant OGPIN-016.

LEMMA 1. Suppose h, Γ , and ε meet the following conditions:

- (1) h is subharmonic in $H^+ \equiv \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$ and $\varepsilon \in (0, \infty)$.
- (2) $h(x+iy) \le \log \frac{1}{y}$ if $x+iy \in H^+$ and $x^2+y^2 \le 1$.
- (3) $\Gamma: [0,1) \to H^+$ is continuous and one-to-one, $\Gamma(0) = i$, $\lim_{t \uparrow 1} \Gamma(t) = 0$, and $|\Gamma(t)| < 1$ for all $t \in [0,1)$.
 - (4) $\sup_{t\in[0,1)}h(\Gamma(t))<\infty$.

Then we have

(5) $\sup_{y \in (0,1]} [h(iy) + (\frac{1}{2} + \varepsilon) \log y] < \infty.$

PROOF. Choose $M \in (0, \infty)$, $\alpha \in (\pi/2, \pi)$ so that $\pi/2\alpha < 1/2 + \varepsilon$, $h(\Gamma(t)) \leq M$ for all $t \in [0, 1)$, and $h(e^{i\theta}) \leq M$ for all $\theta \in [\pi - \alpha, \alpha]$. Finally, select $\delta \in (0, \infty)$. We shall prove

(6)
$$h(iy_0) \le M + 2\delta + \frac{\pi}{2\alpha} \log \frac{1}{\sin \alpha} + \frac{\pi}{2\alpha} \log \frac{1}{y_0},$$

all $y_0 \in (0, 1]$.

Note that (6) implies (5), since $\pi/2\alpha < 1/2 + \varepsilon$, and both y_0 and δ are arbitrary. We now prove (6). Corresponding to fixed y_0 and δ , choose numbers ρ and d such that

(7)
$$0 < d < \rho < y_0, \quad \frac{2\rho y_0}{d^2 + y_0^2} \le \delta,$$
$$\frac{\rho}{y} > \log \frac{1}{y} \quad \text{for all } y \in (0, d].$$

Also, introduce the following sets which depend on the chosen number d:

$$\begin{split} &\Gamma_1 \equiv \{de^{i\theta}: 0 \leq \theta \leq \pi\} \cup \{re^{i\alpha}: d \leq r \leq 1\} \cup \{e^{i\theta}: \pi/2 \leq \theta \leq \alpha\}, \\ &\Gamma_2 \equiv \{de^{i\theta}: 0 \leq \theta \leq \pi\} \cup \{re^{i(\pi-\alpha)}: d \leq r \leq 1\} \cup \{e^{i\theta}: \pi-\alpha \leq \theta \leq \pi/2\}, \\ &t^* \equiv \inf\{t \in [0,1): |\Gamma(t)| = d\}, \\ &\gamma^* \equiv \{\Gamma(t): 0 \leq t \leq t^*\}, \\ &\mathcal{L} \equiv \{z \in \mathbf{C}: \Gamma_1 \cup \gamma^* \text{ separates } z \text{ from } \infty\}, \\ &\mathcal{R} \equiv \{z \in \mathbf{C}: \Gamma_2 \cup \gamma^* \text{ separates } z \text{ from } \infty\}. \end{split}$$

We claim $iy_0 \in \mathcal{L} \cup \mathcal{R} \cup \gamma^*$. This follows from Janisewski's Theorem [1, p. 362], since the set

$$(\Gamma_1 \cup \gamma^*) \cap (\Gamma_2 \cup \gamma^*) = \{ de^{i\theta} : 0 \le \theta \le \pi \} \cup \gamma^*$$

is connected and $\Gamma_1 \cup \Gamma_2$ separates iy_0 from ∞ .

We may therefore assume $iy_0 \in \mathcal{L}$: indeed, (6) is immediate if $iy_0 \in \gamma^*$, and if $iy_0 \in \mathcal{R}$ we merely replace h and Γ by their reflections in the imaginary axis.

Assuming that $iy_0 \in \mathcal{L}$, let Ω denote the set of complex numbers which may be connected to iy_0 by a path not crossing $\Gamma_1 \cup \gamma^*$. By definition of Ω , it follows that Bdry $\Omega \subset \Gamma_1 \cup \gamma^*$ (here Bdry Ω denotes the C-boundary of Ω). Moreover, if we set $m \equiv \min[d \cdot \sin(\alpha), \inf_{z \in \gamma^*} \operatorname{Im} z]$, we have

$$\overline{\Omega} \subset \mathbf{S} \equiv \{z \in \mathbf{C} \colon d \leq |z| \leq 1 \text{ and } \operatorname{Im} z \geq m\}.$$

Indeed, since m > 0, any point outside S either lies on Γ_1 or may be connected to ∞ without crossing $\Gamma_1 \cup \gamma^*$. So, if $z \in \Omega$ and $z \notin S$, we could connect iy_0 to

z and z to ∞ without crossing $\Gamma_1 \cup \gamma^*$: but this contradicts the assumption that $iy_0 \in \mathcal{L}$. Therefore, $\overline{\Omega}$ is a compact subset of H^+ , $\overline{\Omega} \subset S$, and

Bdry
$$\Omega \subset (\Gamma_1 \cup \gamma^*) - \{d, -d\}.$$

We may now complete the proof. For $z = x + iy \in H^+$ define

$$u(z) \equiv (M+\delta) + \left(\log \frac{1}{|z|\sin \alpha}\right) \left(\frac{\arg z}{\alpha}\right)$$

+
$$\rho \left[\frac{y}{(x+d)^2 + y^2} + \frac{y}{(x-d)^2 + y^2}\right].$$

Since $(\log |z|)(\arg z) = \frac{1}{2}\operatorname{Im}(\log z)^2$ in H^+ , we see that u is harmonic in H^+ . Note that each term of u is nonnegative on Bdry Ω since $|z| \leq 1$ for all $z \in \overline{\Omega} \subset S$. Now, if $x^2 + y^2 = d^2$ and y > 0, we have

$$u(x+iy) > \rho \left[\frac{y}{(x+d)^2 + y^2} + \frac{y}{(x-d)^2 + y^2} \right]$$
$$= \frac{\rho}{y} > \log \frac{1}{y} \ge h(x+iy),$$

by (7) and our hypotheses. If $x + iy = re^{i\alpha}$ and $d \le r \le 1$, then

$$u(x+iy) \ge \left(\log \frac{1}{r \sin \alpha}\right) \left(\frac{\alpha}{\alpha}\right) = \log \frac{1}{y} \ge h(x+iy).$$

If $z \in \gamma^*$ or $z = e^{i\theta}$ with $\pi/2 \le \theta \le \alpha$, then $u(z) > M \ge h(z)$. Since Bdry $\Omega \subset \Gamma_1 \cup \gamma^* - \{d, -d\}$, we have shown

$$h(z) - u(z) \le 0$$
 for all $z \in Bdry \Omega$.

Since h-u is subharmonic in H^+ and $\overline{\Omega}$ is a compact subset of H^+ , we conclude

$$h(z) - u(z) \le 0$$
 for all $z \in \Omega$.

Since $iy_0 \in \Omega$ we have

$$h(iy_0) \le u(iy_0) = (M+\delta) + \left(\log\frac{1}{y_0} + \log\frac{1}{\sin\alpha}\right) \cdot \frac{\pi}{2\alpha} + \rho \left[\frac{2y_0}{d^2 + y_0^2}\right].$$

Now (6) follows from the setup in (7).

3. **Proof of Theorem 1.** From the general hypotheses it follows that $\sup_{z\in D} |f'(z)|(1-|z|)^{\mu+1} < \infty$. Now consider hypothesis (1). By theorems of G. MacLane [2, Theorem 1 and Theorem 14 in G. Piranian's review], there is a dense set of points on the unit circle which are endpoints of asymptotic paths of f' (possibly corresponding to infinite limits). This fact allows us to assume that $\lim_{t\uparrow 1} \gamma(t)$ exists. For otherwise there is a nonempty open interval $I \subset (0, 2\pi)$ such that for each $\theta \in I$ there is a corresponding sequence (t_n) from [0,1) with $\lim_{n\uparrow\infty} \gamma(t_n) = e^{i\theta}$. By the existence of asymptotic paths of f', we may choose θ_0 and $\theta_1 \in I$, and a Jordan arc $\sigma: (0,1) \to D$ such that

$$\begin{split} &\lim_{t\downarrow 0}\sigma(t)=e^{i\theta_0}, \qquad \lim_{t\uparrow 1}\sigma(t)=e^{i\theta_1}, \\ &\lim_{t\downarrow 0}f'(\sigma(t))=a, \qquad \lim_{t\uparrow 1}f'(\sigma(t))=b, \end{split}$$

where a and b are elements of the *extended* complex plane. By elementary topology we see that for each $\varepsilon \in (0,1)$ we have

$$\{\gamma(t): 1-\varepsilon < t < 1\} \cap \{\sigma(t): 0 < t < 1\} \neq \emptyset.$$

Since $\lim_{t\uparrow 1} |\gamma(t)| = 1$ and $\sup_{t\in[0,1)} |f'(\gamma(t))| < \infty$, we may conclude that both a and b are (finite) complex numbers. Hence, if $\lim_{t\uparrow 1} \gamma(t)$ does not exist we may replace γ by the parametric arc

$$t \to \sigma\left(\frac{1+t}{2}\right), \qquad t \in [0,1).$$

We may therefore assume, without loss of generality, that $\lim_{t\uparrow 1} \gamma(t) = 1$, $\gamma(0) = 0$, and $\operatorname{Re} \gamma(t) \geq 0$, all $t \in [0, 1)$.

Since $\sup_{z\in D} |f'(z)|(1-|z|)^{\mu+1} < \infty$ it is easy to show that

$$\sup_{\substack{z \in H^+ \\ |z| \le 1}} \left| f'\left(\frac{i-z}{i+z}\right) \cdot \frac{2i}{(i+z)^2} \right| (\operatorname{Im} z)^{\mu+1} < \infty.$$

Hence, without loss of generality (multiply f by a positive constant), we assume

$$\left| f'\left(\frac{i-z}{i+z}\right) \cdot \frac{2i}{(i+z)^2} \right| < \left(\frac{1}{y}\right)^{\mu+1} \quad \text{if } z \equiv x + iy \in H^+ \text{ and } |z| \le 1.$$

Define now

$$\Gamma(t) \equiv i \frac{1 - \gamma(t)}{1 + \gamma(t)}, \qquad t \in [0, 1),$$

$$h(z) \equiv \frac{1}{\mu + 1} \log \left| f'\left(\frac{i - z}{i + z}\right) \cdot \frac{2i}{(i + z)^2} \right|, \qquad z \in H^+.$$

Then h, Γ meet the conditions of Lemma 1 because of our simplifying assumptions. If $\varepsilon \in (0, \infty)$ we conclude

$$\sup_{y \in (0,1]} \left[\frac{1}{\mu+1} \log \left| f'\left(\frac{1-y}{1+y}\right) \cdot \frac{2}{(1+y)^2} \right| + \left(\frac{1}{2} + \varepsilon\right) \log y \right] < \infty$$

and hence that

$$\sup_{y \in (0,1]} \left| f'\left(\frac{1-y}{1+y}\right) \right| \frac{2y^{(1/2+\varepsilon)(1+\mu)}}{(1+y)^2} < \infty.$$

Since $\mu \in [0,1)$ we may choose ε so that $(\frac{1}{2} + \varepsilon)(\mu + 1) < 1$ and obtain

$$\int_{[0,1)} |f'(r)| \, dr = \int_{(0,1]} \left| f'\left(\frac{1-y}{1+y}\right) \right| \cdot \frac{2}{(1+y)^2} \, dy < \infty.$$

This establishes Theorem 1.

4. Corollary for bounded functions. Although the question of the rectifiability of radial images originates in Rudin's paper [3], it is still unknown whether all the radial images of a bounded analytic function f can be of infinite length. However, by Corollary 1 (stated below), this is impossible if f' has less than the maximal density of zeros possible for the derivative of a bounded analytic function in the disk.

To see this, define $A(f') \equiv \{a \in D : f'(a) = 0\}$ whenever f is an analytic function in the disk. Then, if f is bounded, we have

$$\sum_{a \in A(f')} (1 - |a|)^{1+\varepsilon} < \infty, \text{ for all } \varepsilon > 0$$

(see [4, pp. 204–205]). By Corollary 1, if $V(f,\theta)=\infty$ for all $\theta\in[0,2\pi)$ it must actually be the case that $\sum_{a\in A(f')}(1-|a|)=\infty$.

COROLLARY 1. Suppose f is analytic in D, $\sum_{a \in A(f')} (1-|a|) < \infty$, $\mu \in [0,1)$, and $\sup_{z \in D} |f(z)| (1-|z|)^{\mu} < \infty$. Then there exists $\theta \in [0,\pi)$ such that $V(f,\theta) < \infty$.

PROOF. Let B denote the Blaschke product with zero set A and set $g \equiv f'/B$. Since $\log |g|$ is harmonic in D and D is simply connected, there is a simple parametric arc $\gamma \colon [0,1) \to D$ such that $\gamma(0) = 0$, $\lim_{t \uparrow 1} |\gamma(t)| = 1$, and $\log |g(\gamma(t))| = \log |g(0)|$ for all $t \in [0,1)$. Thus $|f'(\gamma(t))| \le |g(0)|$ for all t. Now we apply Theorem 1.

REFERENCES

- 1. J. Dugundji, Topology, Allyn and Bacon, 1966.
- 2. G. R. MacLane, Asymptotic values of holomorphic functions, Rice Univ. Stud. 49 (1963).
- 3. W. Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235-242.
- 4. M. Tsuji, Potential theory in modern function theory, Maruzen, 1959.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HAWAII 96822

DEPARTMENT OF MATHEMATICS, CARLETON UNIVERSITY, OTTAWA, ONTARIO, CANADA KIS 5B6