
proceedings of the
american mathematical society
Volume 103, Number 4, August  1988

STARLIKENESS AND CONVEXITY FROM INTEGRAL
MEANS OF THE DERIVATIVE
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(Communicated by Irwin Kra)

ABSTRACT. If / is analytic in \z\ < 1 and normalized: /(0) = /'(0) -1 = 0,

then / is univalent and starlike in \z\ < 1(f), where

r2rr ï -1/2

/(/) =supr <{ (27T)"1  /       \f'(reit)\2dt\ , 0 < r < 1.^     / l/'(
Jo

Furthermore, there exists a normalized / such that /(/)  <  1 and that /'

vanishes at a point on \z\ = /(/)•

If / is analytic and normalized in \z\ < 1, then / is univalent and convex

in |*| < I(f)/2.

1. Introduction. Let F be the family of functions / analytic in D = {\z\ < 1}

with f(0) = f'(0) - 1 = 0. The radius of starlikeness a(f) of / G F is the largest r

such that / is univalent in D(r) = {\z\ < r) and cf(z) E f(D(r)) for all z E D(r)

and all c, 0 < c < 1, where 0 < r < 1. Setting

27T Ï 1/2

M2(r,f') = l[(27r)-1l^\f'(re ü"2dt,      ,        0<r<l,

and

*a(/)=   sup  r/M2(r,f)    for / G F,
0<r<l

we begin with

THEOREM  1.   a(f) > $2(f) for f EF.

Set ||/'||2 = limr^i M2(r,f) < +oo. Since

(1) ^>2(/) > ll/'ll^1 > 0,

it follows that

(2) <r(/) > Wf'Wï1    for/GF,

a known result [Gl, Theorem 23, p. 187] (see also [Gd2, II, p. 95]).

However, the estimate (2) is of no value in case ||/'||2 = +00, while Theorem 1

remains available because $2(/) > 0 for each / G F.

We can construct f E F such that

(3) cr(/) = $2(/)>||/'||-1>0.
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2. Proof of Theorem 1. See [Dl] for general references for the mean Mp(r, h)

and the norm \\h\\p of h analytic in D, 0 < p < +oo, and 0 < r < 1; thus,

Hp — {h; \\h\\p < +oo}, the Hardy class.

For / G F we set

*p(r, /) = r{\ + Mp(r, f - If}"1/»,        0 < r < 1,

and

$p(/) =   sup   $p(r,f), 0<p<+oo;
0<r<l

we note that $2(r,/) = r/M2(r, /'), so that i>2(/) is the same as in Theorem 1.

Apparently, $p(/) > (1 + ||/' - l||g) —1/p- Theorem 1 is now the case p = 2 in

THEOREM 2.   a(f) > $p(f) for f G F (1 < p < 2).

Comments on Theorem 2 for 1 < p < 2 will be given in Remark 1. For the proof

of Theorem 2 we shall make use of two lemmas.

LEMMA 1.   Ifh(z) = Yln=i hnzn e F, and if ^=2 n\bn\ < 1, then a(h) = 1.

See [Gdl, Theorem 1; CK, Theorem 3; D2, p. 73 and Gd2, I, p. 128].

LEMMA 2 [Dl, Theorem 6.1, p. 94]. If h(z) = J2ñ=o bnz" e //p (1 < p < 2),
then

/ oo \ 1/q

El6«!9 <\\h\\P        (l/p+1/9 = 1),
\n=0 /

where the left-hand side is sup„>0 \bn\ if p = 1.

To prove Theorem 2 we may suppose that

oo

f(z) = 22 *nZn ± Z.
n=l

For each fixed r, 0 < r < 1, we set R = $p(r,/).   Then, 0 < R < r, and for

h(z) = f'(rz) — 1, Lemma 2 yields that

C   oo Ï !/«

jX^nKIr"-1)«!      <\\h\\p = Mp(r,f'-l).

The Holder inequality enables us to have

oo oo

22n\an\Rn-%= 22n\an\rn-\R/r)n~1
n=2 n=2

{oo 1 1/P

22(R/r)pn-p\       =1.

With the aid of Lemma 1 we obtain a(g) — 1 for g(z) = R~l f(Rz) E F, whence

o~(f) > R- Since r is arbitrary this completes the proof of Theorem 2.

To construct / G F with (3) we fix r, 0 < r < 1, and then we choose A such that

r~l < A < 2~1(r + r~3). Then, / is defined by

f(z) = A2z - (A2 - !)Ar\og{rA/(rA - z)};
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this is analytic in {\z\ < rA}. Since

z/r - Í/A
/'(*) = (-Ä)

l-z/(rAY

it follows that M2(r,f) = A, and hence $2(/) > r/A. On the other hand, a(f) <

r/A because f'(r/A) = 0. We thus arrive at a(f) = $2(/) = r/A. For the norm of

/' G H2 we have

eu\-2dtWf'Wl > A2(r~l - A~1)2(2n)-1 P |1 - (rA)-1
Jo

= A2(r~l - A'1)2^ - (rA)'2}'1 > (A/r)2.

Therefore, / satisfies (3).

REMARK 1. The existence of/G Fwithtr(/) = $„(/) > (l + ||/'-l||pr1/p >0

(1 < p < 2) is unknown. Also, it seems not easy to compare $p(r, /) with $2(r, /)

in case p < 2. We observe this for p = 1: sometimes, $i(r, /) < $2(r, /), and

sometimes, $i(r,/) > $2(r,/).

Given r, 0 < r < 1, we observe that f(z) = z + 2~1r~1z2 E F satisfies $i(r,/) <

^>2(?', /) because

1 + Mi(r,f - 1) = 2 > 21/2 = M2(r,/').

On the other hand, let 0 < r < 1. Then, the function f(z) = rG(r_1z), where

G(z) =z + 2~1Az2 - 3-x^3,        A > 4tt/(tt2 - 8),

satisfies $i(r,/) > $2(r,/). Actually,

1 + Mi(r,/' - 1) = 1 + ||G" — 11|i = 4jt~M + 1

<(l + 2A2)1/2 = \\G'\\2=M2(r,f),

where we make use of L v |1 — elt| di = 8.

3. Radius of convexity. The radius of convexity /c(/) of / G F is the largest

r (0 < r < 1) such that / is univalent in D(r) and cf(z) + (1 - c)/(w) G f(D(r))

for all 2, u; G -D(r) and all c, 0 < c < 1.

THEOREM  1C.   K(f)>$2(f)/2 for f EF.

We have no information on the sharpness. Theorem 1C is actually the case p = 2

in

Theorem 2C. k(/) > %(f)/2 for f eF (\<p< 2).

We follow the same lines as in the proof of Theorem 2, where, in this case,

Lemma 1 is replaced by

LEMMA IC. If h(z) = £~=1 bnzn E F, and ifJ2n=2n\bn\ < h then k(H) >

1/2.

The estimate is exact since hi(ho) = 1/2 for ho(z) = z — 2~lz2. The proof of

Lemma 1C depends on the following lemma.
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LEMMA 3.   (See, for example, [Gdl, Theorem 1].) If h(z) = ¿2r?=i bnzn E F,

and if J2^=2 n2\bn\ < L then n(h) = 1.

Lemma 1C is an exercise in [D2, p. 73], and the proof is in a few lines which we

shall give for completeness. For g(z) — 2h(z/2) = Y^=i c«2™ G F we have

oo oo

^n2|c„| < 5^n|6n| <1
n=2 n=2

by n2~n+1 < 1 (n > 2), so that K,(g) = 1 by Lemma 3, and hence k(K) > 1/2.

REMARK  2.   Since $2(/„) = (1 + n2)~1/2 -» 0 as n -► oo for fn(z) = z +

2~1nz2 E F, it follows that $2(F) = 0, where

$2(Fi)=inf{$2(/);/GFi}    for Fj. C F.

For what subfamily Fi of F have we <ï>2 (Fi ) > 0? A typical example is the family

S of all / G F univalent in D. We have

(4) $2(S) >   sup {x/<p(x)}l/2 =c = 0.164...,
0<z<l

where

<p(x) = (1 - x)~5(x3 + Hi2 + llx + 1).

Remembering the known constants [D2, pp. 44 and 98, Gd2, I, pp. 119 and 121],

due to H. Grunsky and R. Nevanlinna:

cG = inf{a(f); fES} = tanh(7r/4) = 0.6557...,

cN = inf{/c(/); / G S} = 2 - y/3 < cG/2,

we have by Theorem 1C the estimates

(5) c<$2(S) <2cN <cG.

It would be interesting to fill the considerable gap between c and 2cn = 0.535-

For the proof of (4) we make use of the de Branges theorem [B] that |an| < n

(n > 2) for f(z) = ¿~=1 anzn E S. Setting x = r2 for 0 < r < 1 we obtain

oo OO

M2(r,f')2 = Y2^W?r2n-2 < 22 n'x'1-1 = 4>(x),
n=l n=l

so that

fc3(/) > c = {xo/cp(xo)}1/2    for x0 = 0.84....

REMARK   3.   Theorem 1C also follows directly from Lemma 3.   For f(z) =

5Z^=i anZn ^ z and for 0 < r < 1, let Q = Q(r, f) be the real root of the equation

(6) A{(l + x)/(l-xf-l} = l,        A = M2(r,f')2-l.

We shall soon observe that 0 < Q < 1. Set

y(rJ)=rQ(r,f)1'2,        0 < r < 1.

Then, we can show that

(7) «(/)>   sup  *(r,/),
0<r<l
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and furthermore,

(8) *(r,/)>*a(r,/)/2       (0 < r < 1),

whence Theorem 1C follows.

We consider the cubic curve Y = X3 + BX — 2B in the XY-plane, where

B = A/(l + A). The curve cuts the A-axis at the only one point

X0 = B1/3

and has the straight line

B\1/2)1/3      f        (       ßN1/2!173

1+|1 + 27 +1-l1-î7

Y = (B + 3)X-2B-2

as the tangent at X = 1; the tangent cuts the A-axis at Ai = 2(B + 1)/(B + 3).

By an elementary analysis we have 0 < Xq < Xi < 1. Now the solution Q of (6) is

given by Q = 1 — Ao, so that simple calculations show that

4-1M2(r,f')-2 <l-Xi<Q<l.

We thus have (8).

For the proof of (7) we first note that 0 < R = *(r, /) < r.  By the Schwarz

inequality we obtain

(f2n2\an\RnA   =  (£«2|an|r»-1(Ä/rr-1>)

<M2(r,f'-l)2(JTn2(R/r)2n-2)=l

by (6), so that n(g) = 1 for g(z) = R~l f(Rz) by Lemma 3. We thus have «(/) > R,

and this completes the proof of (7).

ADDED IN PROOF TO REMARK  2.   For the Koebe function k G S we have

c = $2(fc) > $2(S). Therefore $2(S) = c.
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