STARLIKENESS AND CONVEXITY FROM INTEGRAL MEANS OF THE DERIVATIVE

SHINJI YAMASHITA

(Communicated by Irwin Kra)

ABSTRACT. If f is analytic in |z| < 1 and normalized: f(0) = f'(0) - 1 = 0, then f is univalent and starlike in |z| < I(f), where

$$I(f) = \sup r \left\{ (2\pi)^{-1} \int_0^{2\pi} |f'(re^{it})|^2 dt \right\}^{-1/2}, \qquad 0 \le r < 1.$$

Furthermore, there exists a normalized f such that I(f) < 1 and that f' vanishes at a point on |z| = I(f).

If f is analytic and normalized in |z| < 1, then f is univalent and convex in |z| < I(f)/2.

1. Introduction. Let F be the family of functions f analytic in $D = \{|z| < 1\}$ with f(0) = f'(0) - 1 = 0. The radius of starlikeness $\sigma(f)$ of $f \in F$ is the largest r such that f is univalent in $D(r) = \{|z| < r\}$ and $cf(z) \in f(D(r))$ for all $z \in D(r)$ and all c, 0 < c < 1, where $0 < r \le 1$. Setting

$$M_2(r, f') = \left\{ (2\pi)^{-1} \int_0^{2\pi} |f'(re^{it})|^2 dt \right\}^{1/2}, \qquad 0 \le r < 1,$$

and

$$\Phi_2(f) = \sup_{0 \le r \le 1} r/M_2(r, f') \text{ for } f \in F,$$

we begin with

THEOREM 1. $\sigma(f) > \Phi_2(f)$ for $f \in F$.

Set
$$||f'||_2 = \lim_{r \to 1} M_2(r, f') \le +\infty$$
. Since

(1)
$$\Phi_2(f) \ge ||f'||_2^{-1} \ge 0,$$

it follows that

(2)
$$\sigma(f) \ge ||f'||_2^{-1} \quad \text{for } f \in F,$$

a known result [G1, Theorem 23, p. 187] (see also [Gd2, II, p. 95]).

However, the estimate (2) is of no value in case $||f'||_2 = +\infty$, while Theorem 1 remains available because $\Phi_2(f) > 0$ for each $f \in F$.

We can construct $f \in F$ such that

(3)
$$\sigma(f) = \Phi_2(f) > ||f'||_2^{-1} > 0.$$

Received by the editors March 9, 1987 and, in revised form, May 19, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 30C55; Secondary 30C45.

2. Proof of Theorem 1. See [**D1**] for general references for the mean $M_p(r,h)$ and the norm $||h||_p$ of h analytic in D, $0 , and <math>0 \le r < 1$; thus, $H^p = \{h; ||h||_p < +\infty\}$, the Hardy class.

For $f \in F$ we set

$$\Phi_p(r,f) = r\{1 + M_p(r,f'-1)^p\}^{-1/p}, \qquad 0 \le r < 1,$$

and

$$\Phi_p(f) = \sup_{0 \le r < 1} \Phi_p(r, f), \qquad 0 < p < +\infty;$$

we note that $\Phi_2(r,f) = r/M_2(r,f')$, so that $\Phi_2(f)$ is the same as in Theorem 1. Apparently, $\Phi_p(f) \ge (1 + \|f' - 1\|_p^p)^{-1/p}$. Theorem 1 is now the case p = 2 in

THEOREM 2.
$$\sigma(f) \ge \Phi_p(f)$$
 for $f \in F$ $(1 \le p \le 2)$.

Comments on Theorem 2 for $1 \le p < 2$ will be given in Remark 1. For the proof of Theorem 2 we shall make use of two lemmas.

LEMMA 1. If
$$h(z) = \sum_{n=1}^{\infty} b_n z^n \in F$$
, and if $\sum_{n=2}^{\infty} n|b_n| \le 1$, then $\sigma(h) = 1$.

See [Gd1, Theorem 1; CK, Theorem 3; D2, p. 73 and Gd2, I, p. 128].

LEMMA 2 [D1, Theorem 6.1, p. 94]. If $h(z) = \sum_{n=0}^{\infty} b_n z^n \in H^p$ $(1 \le p \le 2)$, then

$$\left(\sum_{n=0}^{\infty} |b_n|^q\right)^{1/q} \le ||h||_p \qquad (1/p + 1/q = 1),$$

where the left-hand side is $\sup_{n\geq 0} |b_n|$ if p=1.

To prove Theorem 2 we may suppose that

$$f(z) = \sum_{n=1}^{\infty} a_n z^n \not\equiv z.$$

For each fixed r, 0 < r < 1, we set $R = \Phi_p(r, f)$. Then, 0 < R < r, and for h(z) = f'(rz) - 1, Lemma 2 yields that

$$\left\{ \sum_{n=2}^{\infty} (n|a_n|r^{n-1})^q \right\}^{1/q} \le ||h||_p = M_p(r, f'-1).$$

The Hölder inequality enables us to have

$$\sum_{n=2}^{\infty} n|a_n|R^{n-1} = \sum_{n=2}^{\infty} n|a_n|r^{n-1}(R/r)^{n-1}$$

$$\leq M_p(r, f'-1) \left\{ \sum_{n=2}^{\infty} (R/r)^{pn-p} \right\}^{1/p} = 1.$$

With the aid of Lemma 1 we obtain $\sigma(g) = 1$ for $g(z) = R^{-1}f(Rz) \in F$, whence $\sigma(f) \geq R$. Since r is arbitrary this completes the proof of Theorem 2.

To construct $f \in F$ with (3) we fix r, 0 < r < 1, and then we choose A such that $r^{-1} < A < 2^{-1}(r + r^{-3})$. Then, f is defined by

$$f(z) = A^2 z - (A^2 - 1)Ar \log\{rA/(rA - z)\};$$

this is analytic in $\{|z| < rA\}$. Since

$$f'(z) = (-A) \cdot \frac{z/r - 1/A}{1 - z/(rA)},$$

it follows that $M_2(r, f') = A$, and hence $\Phi_2(f) \ge r/A$. On the other hand, $\sigma(f) \le r/A$ because f'(r/A) = 0. We thus arrive at $\sigma(f) = \Phi_2(f) = r/A$. For the norm of $f' \in H^2$ we have

$$||f'||_2^2 \ge A^2 (r^{-1} - A^{-1})^2 (2\pi)^{-1} \int_0^{2\pi} |1 - (rA)^{-1} e^{it}|^{-2} dt$$
$$= A^2 (r^{-1} - A^{-1})^2 \{1 - (rA)^{-2}\}^{-1} > (A/r)^2.$$

Therefore, f satisfies (3).

REMARK 1. The existence of $f \in F$ with $\sigma(f) = \Phi_p(f) > (1 + ||f'-1||_p^p)^{-1/p} > 0$ $(1 \le p < 2)$ is unknown. Also, it seems not easy to compare $\Phi_p(r, f)$ with $\Phi_2(r, f)$ in case p < 2. We observe this for p = 1: sometimes, $\Phi_1(r, f) < \Phi_2(r, f)$, and sometimes, $\Phi_1(r, f) > \Phi_2(r, f)$.

Given r, 0 < r < 1, we observe that $f(z) = z + 2^{-1}r^{-1}z^2 \in F$ satisfies $\Phi_1(r, f) < \Phi_2(r, f)$ because

$$1 + M_1(r, f' - 1) = 2 > 2^{1/2} = M_2(r, f').$$

On the other hand, let 0 < r < 1. Then, the function $f(z) = rG(r^{-1}z)$, where

$$G(z) = z + 2^{-1}Az^2 - 3^{-1}Az^3, \qquad A > 4\pi/(\pi^2 - 8),$$

satisfies $\Phi_1(r, f) > \Phi_2(r, f)$. Actually,

$$1 + M_1(r, f' - 1) = 1 + ||G' - 1||_1 = 4\pi^{-1}A + 1$$
$$< (1 + 2A^2)^{1/2} = ||G'||_2 = M_2(r, f'),$$

where we make use of $\int_0^{2\pi} |1 - e^{it}| dt = 8$.

3. Radius of convexity. The radius of convexity $\kappa(f)$ of $f \in F$ is the largest r $(0 < r \le 1)$ such that f is univalent in D(r) and $cf(z) + (1 - c)f(w) \in f(D(r))$ for all $z, w \in D(r)$ and all c, 0 < c < 1.

THEOREM 1C. $\kappa(f) \ge \Phi_2(f)/2$ for $f \in F$.

We have no information on the sharpness. Theorem 1C is actually the case p=2 in

Theorem 2C. $\kappa(f) \ge \Phi_p(f)/2$ for $f \in F$ $(1 \le p \le 2)$.

We follow the same lines as in the proof of Theorem 2, where, in this case, Lemma 1 is replaced by

LEMMA 1C. If $h(z) = \sum_{n=1}^{\infty} b_n z^n \in F$, and if $\sum_{n=2}^{\infty} n|b_n| \leq 1$, then $\kappa(h) \geq 1/2$.

The estimate is exact since $\kappa(h_0) = 1/2$ for $h_0(z) = z - 2^{-1}z^2$. The proof of Lemma 1C depends on the following lemma.

LEMMA 3. (See, for example, [Gd1, Theorem 1].) If $h(z) = \sum_{n=1}^{\infty} b_n z^n \in F$, and if $\sum_{n=2}^{\infty} n^2 |b_n| \leq 1$, then $\kappa(h) = 1$.

Lemma 1C is an exercise in [D2, p. 73], and the proof is in a few lines which we shall give for completeness. For $g(z) = 2h(z/2) = \sum_{n=1}^{\infty} c_n z^n \in F$ we have

$$\sum_{n=2}^{\infty} n^2 |c_n| \le \sum_{n=2}^{\infty} n|b_n| \le 1$$

by $n2^{-n+1} \le 1$ $(n \ge 2)$, so that $\kappa(g) = 1$ by Lemma 3, and hence $\kappa(h) \ge 1/2$. REMARK 2. Since $\Phi_2(f_n) = (1 + n^2)^{-1/2} \to 0$ as $n \to \infty$ for $f_n(z) = z + 1$ $2^{-1}nz^2 \in F$, it follows that $\Phi_2(F) = 0$, where

$$\Phi_2(F_1) = \inf \{ \Phi_2(f); f \in F_1 \} \text{ for } F_1 \subset F.$$

For what subfamily F_1 of F have we $\Phi_2(F_1) > 0$? A typical example is the family S of all $f \in F$ univalent in D. We have

(4)
$$\Phi_2(S) \ge \sup_{0 \le x < 1} \{x/\phi(x)\}^{1/2} \equiv c = 0.164...,$$

where

$$\phi(x) = (1-x)^{-5}(x^3 + 11x^2 + 11x + 1).$$

Remembering the known constants [D2, pp. 44 and 98, Gd2, I, pp. 119 and 121], due to H. Grunsky and R. Nevanlinna:

$$c_G = \inf\{\sigma(f); f \in S\} = \tanh(\pi/4) = 0.6557...,$$

$$c_N = \inf{\{\kappa(f); f \in S\}} = 2 - \sqrt{3} < c_G/2,$$

we have by Theorem 1C the estimates

$$(5) c \leq \Phi_2(S) \leq 2c_N < c_G.$$

It would be interesting to fill the considerable gap between c and $2c_N = 0.535...$ For the proof of (4) we make use of the de Branges theorem [B] that $|a_n| \le n$ $(n \ge 2)$ for $f(z) = \sum_{n=1}^{\infty} a_n z^n \in S$. Setting $x = r^2$ for 0 < r < 1 we obtain

$$M_2(r, f')^2 = \sum_{n=1}^{\infty} n^2 |a_n|^2 r^{2n-2} \le \sum_{n=1}^{\infty} n^4 x^{n-1} = \phi(x),$$

so that

$$\Phi_2(f) \ge c = \{x_0/\phi(x_0)\}^{1/2}$$
 for $x_0 = 0.84...$

REMARK 3. Theorem 1C also follows directly from Lemma 3. For f(z) = $\sum_{n=1}^{\infty} a_n z^n \not\equiv z$ and for 0 < r < 1, let Q = Q(r, f) be the real root of the equation

(6)
$$A\{(1+x)/(1-x)^3-1\}=1, \qquad A=M_2(r,f')^2-1.$$

We shall soon observe that 0 < Q < 1. Set

$$\Psi(r, f) = rQ(r, f)^{1/2}, \qquad 0 < r < 1.$$

Then, we can show that

(7)
$$\kappa(f) \ge \sup_{0 \le r \le 1} \Psi(r, f),$$

and furthermore,

(8)
$$\Psi(r, f) \ge \Phi_2(r, f)/2 \qquad (0 < r < 1),$$

whence Theorem 1C follows.

We consider the cubic curve $Y = X^3 + BX - 2B$ in the XY-plane, where B = A/(1+A). The curve cuts the X-axis at the only one point

$$X_0 = B^{1/3} \left[\left\{ 1 + \left(1 + \frac{B}{27} \right)^{1/2} \right\}^{1/3} + \left\{ 1 - \left(1 + \frac{B}{27} \right)^{1/2} \right\}^{1/3} \right],$$

and has the straight line

$$Y = (B+3)X - 2B - 2$$

as the tangent at X = 1; the tangent cuts the X-axis at $X_1 = 2(B+1)/(B+3)$. By an elementary analysis we have $0 < X_0 < X_1 < 1$. Now the solution Q of (6) is given by $Q = 1 - X_0$, so that simple calculations show that

$$4^{-1}M_2(r,f')^{-2} \le 1 - X_1 < Q < 1.$$

We thus have (8).

For the proof of (7) we first note that $0 < R \equiv \Psi(r, f) < r$. By the Schwarz inequality we obtain

$$\left(\sum_{n=2}^{\infty} n^2 |a_n| R^{n-1}\right)^2 = \left(\sum_{n=2}^{\infty} n^2 |a_n| r^{n-1} (R/r)^{n-1}\right)^2$$

$$\leq M_2(r, f'-1)^2 \left(\sum_{n=2}^{\infty} n^2 (R/r)^{2n-2}\right) = 1$$

by (6), so that $\kappa(g) = 1$ for $g(z) = R^{-1}f(Rz)$ by Lemma 3. We thus have $\kappa(f) \ge R$, and this completes the proof of (7).

ADDED IN PROOF TO REMARK 2. For the Koebe function $k \in S$ we have $c = \Phi_2(k) \ge \Phi_2(S)$. Therefore $\Phi_2(S) = c$.

REFERENCES

- [B] Louis de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
- [CK] J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229-233.
- [D1] P. L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- [D2] ____, Univalent functions, Springer-Verlag, Berlin and New York, 1983.
- [Gd1] A. W. Goodman, Univalent functions and nonanalytic curves Proc. Amer. Math. Soc. 8 (1957), 598-601.
- [Gd2] _____, Univalent functions. I, II, Mariner, Tampa, 1983.
- [G1] G. M. Goluzin (Г. М. Голузин), To the theory of univalent conformal mappings (К теории однолистных конформных преобразований), Mat. Sb. 42:2 (1935), 169-190.

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, FUKASAWA, SETAGAYA, TOKYO 158, JAPAN