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ABSTRACT. If f is analytic in |z| < 1 and normalized: f(0) = f'(0) — 1 =0,
then f is univalent and starlike in |z| < I(f), where
-1/2

27
I(f)=supr{(27r)'l/ |f'(re“)|2dt} , 0<r<l1.
0

Furthermore, there exists a normalized f such that I(f) < 1 and that f’
vanishes at a point on |z| = I(f).

If f is analytic and normalized in |z| < 1, then f is univalent and convex
in |2| < I(f)/2.

1. Introduction. Let F be the family of functions f analytic in D = {|z| < 1}
with f(0) = f/(0) — 1 = 0. The radius of starlikeness o(f) of f € F is the largest r
such that f is univalent in D(r) = {|2| < r} and cf(z) € f(D(r)) for all z € D(r)
and all ¢, 0 < ¢ < 1, where 0 < r < 1. Setting

1/2

Ma(r, f') = {(2%)"/:7r lf'(Tei‘)lzdt} , 0<r<1,

and
®2(f) = sup r/Ma(r,f') for f€F,
0<r<1
we begin with
THEOREM 1. o(f) > ®2(f) for f € F.
Set || f'||2 = lim,—1 Ma(r, f') < 4o00. Since

(1) o2(f) 2 I1/1z" 20,
it follows that
(2) o(f) 21f'I7" for fE€F,

a known result [G1, Theorem 23, p. 187] (see also [Gd2, II, p. 95]).

However, the estimate (2) is of no value in case ||f’||2 = +00, while Theorem 1
remains available because ®;(f) > 0 for each f € F.

We can construct f € F such that

) a(f) = ®2(f) > If'Iz" > 0.
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2. Proof of Theorem 1. See [D1] for general references for the mean My (r, h)
and the norm |||, of h analytic in D, 0 < p < 400, and 0 < r < 1; thus,
H? = {h;||h||p < +00}, the Hardy class.

For f € F we set

O,(r, f) =r{l+ My(r, f —1)P}"17  0<r<1,
and

<I>p(f)=oiugl<1>p(r,f), 0 < p < +o0;
<r

we note that ®,(r, f) = r/My(r, f'), so that ®3(f) is the same as in Theorem 1.
Apparently, ®,(f) > (1+ ||f' - 1”5)_1/1" Theorem 1 is now the case p =2 in

THEOREM 2. o(f) > ®,(f) for fe F (1<p<2).

Comments on Theorem 2 for 1 < p < 2 will be given in Remark 1. For the proof
of Theorem 2 we shall make use of two lemmas.

LEMMA 1. Ifh(z) =302 bp2® € F, and if 3,2 o n|by| < 1, then o(h) = 1.
See [Gd1, Theorem 1; CK, Theorem 3; D2, p. 73 and Gd2, I, p. 128].

LEMMA 2 [D1, Theorem 6.1, p. 94]. If h(z) = > oo s ba2™ € HP (1 < p < 2),
then

o0 1/q
(Z |bnlq) <lhll, (A/p+1/g=1),
n=0

where the left-hand side is sup,>q |bn| tf p = 1.

To prove Theorem 2 we may suppose that
[o ]
f(z) = Z an2" # 2.
n=1

For each fixed r, 0 < r < 1, we set R = ®,(r, f). Then, 0 < R < r, and for
h(z) = f'(rz) — 1, Lemma 2 yields that

o) 1/q
{E(nlanlr""l)q} < [hllp = Mp(r, ' = 1).

n=2

The Holder inequality enables us to have

> nlan Rt = f: nlan|r* =t (R/r)" !
n=2 n=2
o 1/p
< Mp(r, f' = 1) {Z(R/r)”""’} =1
n=2

With the aid of Lemma 1 we obtain o(g) = 1 for g(z) = R~ f(Rz) € F, whence
o(f) > R. Since r is arbitrary this completes the proof of Theorem 2.

To construct f € F with (3) we fix 7, 0 < r < 1, and then we choose A such that
11 < A< 27Y(r +r73). Then, f is defined by

f(z)= A%z — (A2 —1)Arlog{rA/(rA — 2)};
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this is analytic in {|z| < rA}. Since
iy a4y 2lT—1/A
f(Z)—( A) 1—2/(7‘A)’

it follows that Mz (r, f') = A, and hence ®2(f) > r/A. On the other hand, o(f) <
r/A because f'(r/A) = 0. We thus arrive at o(f) = ®3(f) = r/A. For the norm of
f' € H? we have

27
1713 > 42 — A= 1)2(2m) ! /0 11— (rA)~1e"|~2 dt

=AM r - ATHH{1 - (rA)72 7 > (Afr)2

Therefore, f satisfies (3).

REMARK 1. The existence of f € F with o(f) = ®,(f) > (1+]|f'—1|[5)~/7 > 0
(1 £ p < 2)is unknown. Also, it seems not easy to compare ®,(r, f) with ®5(r, f)
in case p < 2. We observe this for p = 1: sometimes, ®;(r, f) < ®2(r, f), and
sometimes, ®,(r, f) > ®a(r, f).

Givenr, 0 < r < 1, we observe that f(z) = 2+271r~122 € F satisfies &, (r, f) <
®y(r, f) because

1+ M(r, f' —1)=2> 22 = My(r, f).
On the other hand, let 0 < r < 1. Then, the function f(z) = rG(r~'z), where
G(z) =2z+27142% - 371428, A > 4rn/(n? - 8),
satisfies @y (r, f) > ®2(r, f). Actually,
1+ Mi(r,f'—1)=1+||G' = 1|1 =474 +1
< (1+24%)12 = ||G'|l = My(r, ),
where we make use of fozﬂ |1 —e|dt =8.

3. Radius of convexity. The radius of convexity «(f) of f € F is the largest
r (0 < r < 1) such that f is univalent in D(r) and c¢f(z) + (1 — ¢) f(w) € f(D(r))
forall z, we D(r) and all ¢, 0 < c < 1.

THEOREM 1C. k(f) > ®2(f)/2 for f € F.

We have no information on the sharpness. Theorem 1C is actually the case p = 2
in

THEOREM 2C. k(f) > ®,(f)/2 for fe F (1<p<2).

We follow the same lines as in the proof of Theorem 2, where, in this case,
Lemma 1 is replaced by

LEMMA 1C. Ifh(2) = 302 b2 € F, and if Y oo ,nlbs| < 1, then x(h) >
1/2.

The estimate is exact since k(ho) = 1/2 for ho(z) = z — 2722, The proof of
Lemma 1C depends on the following lemma.
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LEMMA 3. (See, for example, [Gd1, Theorem 1].) If h(z) = Y ;2 ; bp2™ € F,
and if 3.2 , n?|b,| < 1, then k(h) = 1.

Lemma 1C is an exercise in [D2, p. 73], and the proof is in a few lines which we
shall give for completeness. For g(z) = 2h(2/2) = Y o> | cp2™ € F we have

oo oo
Y o nPlen| <D nlbnl <1
n=2 n=2

by n27"*1 <1 (n > 2), so that k(g) = 1 by Lemma 3, and hence (k) > 1/2.
REMARK 2. Since ®3(f,) = (1 +n2)"2 - 0as n — oo for fu(z) = z +
27 1nz? € F, it follows that ®3(F) = 0, where

®y(Fy) = inf{®(f); f € F;} for F; C F.

For what subfamily F; of F have we ®2(F;) > 07 A typical example is the family
S of all f € F univalent in D. We have

4) ®,(S) > sup {z/¢(z)}/*=c=0.164...,
0<z<1
where
d(z) = (1 —2)7%(2% + 112% + 11z + 1).

Remembering the known constants [D2, pp. 44 and 98, Gd2, I, pp. 119 and 121],
due to H. Grunsky and R. Nevanlinna:

cg = inf{o(f); f € S} = tanh(r/4) = 0.6557 ...,
ey = inf{k(f); f €S} =2-V3<cg/2,
we have by Theorem 1C the estimates
(5) c < P3(S) <2y < cq-

It would be interesting to fill the considerable gap between ¢ and 2cy = 0.535....
For the proof of (4) we make use of the de Branges theorem [B] that |a,| < n
(n>2) for f(z) =Y oo anz™ € S. Setting z =r? for 0 < r < 1 we obtain

oo 00
MQ(T, fl)2 — Z n2|an'2r2n—2 < Z n4zn—1 — ¢(Il?),
n=1 n=1

so that
®2(f) > ¢ = {z0/d(0)}/? for 2o =0.84....

REMARK 3. Theorem 1C also follows directly from Lemma 3. For f(z) =
Yo janz" #Z zand for 0 < r < 1, let Q = Q(r, f) be the real root of the equation

(6) A{(l+z)/(1-2)®-1}=1, A=M(r,f)? -1
We shall soon observe that 0 < @ < 1. Set

¥(r, f) = rQ(r, f)V/?, 0<r<l1.
Then, we can show that

(7) k(f) > sup ¥(r,f),

o<r<1
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and furthermore,
(8) ¥(r,f) 2 ®2(r, f)/2  (0<r<1),

whence Theorem 1C follows.
We consider the cubic curve Y = X% + BX — 2B in the XY -plane, where
B =A/(1+ A). The curve cuts the X-axis at the only one point

1/3 1/3
B 1/2 B 1/2
— nl/3 _ _
Xo=18B {1+(1+27) } +{1 <1+27> ,

and has the straight line
Y=(B+3)X-2B-2

as the tangent at X = 1; the tangent cuts the X-axis at X; = 2(B+1)/(B + 3).
By an elementary analysis we have 0 < Xo < X; < 1. Now the solution @ of (6) is
given by Q = 1 — Xj, so that simple calculations show that

47 M (r f)2<1-X, <Q< 1.

We thus have (8).
For the proof of (7) we first note that 0 < R = ¥(r, f) < r. By the Schwarz
inequality we obtain

oo 2 oo
(Z n2|aan"_l) = (Z n2|an|r"_1(R/r)"_1)
n=2 n=2

[e o}

2

< My(r, ' —1)? ( n2(R/r)2"‘2) =1
2

n=

by (6), so that k(g) = 1 for g(z) = R~! f(Rz) by Lemma 3. We thus have x(f) > R,
and this completes the proof of (7).

ADDED IN PROOF TO REMARK 2. For the Koebe function & € S we have
¢ = ®y(k) > ®2(S). Therefore 4(S) =c.
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