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ABSTRACT. A natural extension of the closed unbounded filter is introduced.

This extension coincides with the closed unbounded filter on uncountable,

regular cardinals re, but in general does not for PKA and [A]K.

Henceforth, k will be a regular, uncountable cardinal, unless specified otherwise.

A closed unbounded subset of k is a cofinal subset of k which contains the supremum

of all increasing sequences from the subset of length less than k. The collection of

all closed unbounded subsets of n generates a /c-complete, normal filter over k called

the club filter. The notion of a closed unbounded subset of a cardinal k has been

generalized to the set of all subsets of X of cardinality less than k, PkX (see [3]),

and the set of all subsets of A of cardinality k, [X]k (see [2]). In both instances

the collection of closed unbounded sets generate /c-complete, fine, normal filters,

the club filters. This paper introduces a natural extension of the club filter. This

extension coincides with the club filter on k, but in general does not for PKX and

[X]\
The motivation for the filter arose from the desirable property of certain se-

quences (or proper chains in the case of PKX) {pa : a < S} which satisfy

UPc
\a<6

where \A\ denotes the cardinality of A Since

= U ip«i'
a<6

(Jpc
a<6

= \s\ U Ip°
a<6

this property is satisfied by sequences (or chains) {pa : a < S} which satisfy

w < U ip*i-

A canonical example of a sequence which fails to satisfy this is {pa : a < 6}

where pa = a and 6 — Wi.

DEFINITION. A subset "o" of k is said to be L-closed if for any sequence {pa : a <

S} Cb with S < k and |<5| < UQ<¿¡ \Pa\, then \Ja<6P* € °-
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An L-closed, unbounded subset of /c is a cofinal subset of /c which is L-closed.

The verification that the L-closed, unbounded subsets of /c generate a /c-complete,

normal filter over /c, called the L-club filter, is a routine exercise once familiar with

the details of generating the club filter over /c (see [4]). The L-club filter and the

club filter coincide on k: Let b C /c be closed unbounded. Then b is L-closed

unbounded. And if b C /c is L-closed unbounded, consider

(i) if /c is a limit cardinal

a = 6n {a </c:a is a cardinal}.

(ii) if k is a successor cardinal and /c = 7+

a = (6n /c - 7).

In both cases a C 6 and a is closed unbounded.

For A C PKX, X is unbounded if for any x E PKX, then there exists a y E X such

that x C y. And A is closed if for any collection {pa : a < S} C X with pa C pa+i

for a < S (called a chain of subsets from PKX) with S < k, then \Ja<s pa € A.

DEFINITION. A set A C PkX is said to be L-closed if whenever {pa : a < S} C A

is a proper chain such that ]S\ < \Ja<6 \pa\ < «, then {Ja<g P<* € X-

Let

LKX = {A C PKX:  there exists an X C A which is L-closed unbounded}.

PROPOSITION  1.   LKX is a K-complete, fine, normal filter over PKX.

PROOF. The proof follows closely the proof that the closed unbounded sets on

PKX generate the club filter (see [3]). The only modification for this proof requires

that wherever a chain {pa : a < S} is constructed in the club filter proof, the chain

must be made to satisfy |<5| < UQ<¿ IP<*I- This Presents little difficulty in any of the

situations where chains are needed. The proof of the next proposition will show

the ease at which a chain, in most of the circumstances required here, can be made

to satisfy this condition.

A subset D C PKX is said to be directed if given x,y E D, then there exists z E D

such that x U y C z. A subset A C PKX is said to be closed under directed sets if

given D C X such that ]D\ < /c and D is directed, then (JD E X. It is a result of

Solovay that A is closed unbounded if and only if A is closed under directed sets

(see [5]). The analog here is the following:

PROPOSITION 2. An L-closed unbounded subset of PKX is closed under unions

of directed sets D where \D\ < \J{\p\ : p E D}.

PROOF. (This is basically Solovay's proof with the required modifications.) Let

B be an L-closed unbounded subset of PKX and D C B a directed set such that

1^1 — U{IpI: P S D}. Only the case where |D| > No requires an adjustment.

Assume if D' is any directed subset of B, \D'\ < \D\ and |D'| < (J{IpI: P € D},
then \JD' EB.

CLAIM. Given any set A c D, there exists a set A+ such that

(1) XCX+ CD,
(2) |A+|<|A|+N0<U{|phpeA+}and
(3) X+ is directed.

Proof of Claim. See [51.
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Well order D by po,Pi,... ,pa, ■ ■ ■ where a < ]D\. Let

Do = {po},

Di = {D0,p1}+,

D2 = {D0,Di,p2,<72}+ where q2 E D such that \q2\ > 2,

Da = {{Dß}ß<a,Pa,qa} + ,

where qa G D such that \qa\  > a + Ko-    (Note:   such a qa exists since |D| <

lJ{|p|:p€D}.) Now,

\Da\ = \{{D0}0<a,pa,qa}+] <a + N0< |D|.

Hence,

\Da\<{J{\p\:PEDa}.

By our assumption, (J Da E B. So let

Qa = \jDaEB     for all a < |D|.

Then {Qa : a < \D\} C B is a chain and

]D]<\J{a+: a <]D\} <{J{]qa]: a <]D\}

< \J{\UDa\: a < \D\} = \J{\Qa\: a < \D\}.

Since B is L-closed, \JD = Ua<|D| Qa £ &•
In contrast to the situation on cardinals where the L-club and club filters coin-

cide, the next proposition shows that in general this not the case for PKX when a

large cardinal assumption is made on k.

PROPOSITION 3. Assume /c is a huge cardinal and X is any cardinal greater

than k such that there exists a n-complete, fine, normal ultrafilter over [X]K, then

there exists an L-closed unbounded subset of PKX which is not in the club filter.

PROOF. Since X must be measurable (see [1 or 6]), a regular cardinal 7 can

be chosen such that /c < 7 < A. Now X must be a regular cardinal so A can be

partitioned into A-many disjoint intervals of length 7. For a < X denote the ath

such interval as 7Q. Given any ß < X let the 7th index of ß, denoted 7(/3), be

T(ß) =  order type of 7Q n /?,      where ß E 7Q.

For xEPKX let

T"x = {T(ß):ßEx}.

Set
B = {xEPKX: |r"x| = |z|}.

CLAIM 1. B is L-closed unbounded.

PROOF OF CLAIM. B is readily seen to be unbounded, since for any x E PKX,

xli \x\Uu E B.
Next, let {pa : a < S} C B be a chain of size S < /c, where |<5| < (Ja<s \pa\-

Suppose   llUcPcl   >   |r"Ua<iP"l-    Let ß =   lr"Ua<oPal-    S°   IUa<0Pa|   >  ß-
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Since \Ja<6 \pa\ = IUa<iP«l -* ß there exists a < S such that |pQ| > ß. But

|r"pa| = \Pa\, which is clearly false. Therefore, \Ja<1Pa € B, and the claim is

proved.

DiPrisco and Marek used the following type of construction to define their notion

of closed unbounded sets on [X]K (see [2]):

For B C PKX from above, set

Ab = |p€ [A]K :   there exists a chain {pa : a < k} C B and p = [J pa > .

I a<K       )

CLAIM 2. If p G AB, then |r"p| = «•

PROOF OF CLAIM. Assume |r"p| < k. Since /c = |p| = \[ja<KPa\ = \Ja<K \Pa\

there exists a < k such that |pa| > |r"p|. But this gives

|r"pa| = bc|>|r"p| = r"U Pa

which cannot be true.

Finally, assume there exists a closed unbounded set C from PKX which is a subset

of B. By a result in [2] if U is any /c-complete, fine, normal ultrafilter over [A]K and

C is any closed unbounded subset of PKX, then Ac G U. So by our assumption,

AB E U. That is, {p G [A]K : |r"p| = k} G U.

Let j : V —* M be the canonical elementary embedding produced by the ultra-

filter U on [A]K. Then, A E U iff j"X E j(A). Hence,

M h (jT)"j"X = ,"(«)

by the above. However, the definition of T and the elementarity of j yield

MN(jT)V'A=/7-

But, this is a contradiction, since 7 < A.

This demonstrates that there are subsets of PKX which are L-closed unbounded

but not closed. However, such subsets of Pkk+ do not exist.

Whether or not an L-closed unbounded subset of PKX can be constructed which

does not contain a closed unbounded subset, without first assuming the existence

of a huge cardinal, is open. However, there exist examples of L-closed unbounded

subsets of PKX which are not closed unbounded. The following was provided by

C. A. DiPrisco:

E = {PEPKX: |pn/c| = |p-/c|}.

The problem remains to determine whether or not such sets are in the club filter

on PKX.
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