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ABSTRACT. A prime (left) Goldie semiprincipal left ideal ring is the endo-
morphism ring E(F, A) of a free module A, of finite rank, over a (left) Ore
domain F. We examine the uniqueness of the module (F, A) in the sense
of determining necessary and sufficient conditions that every isomorphism of
E(F, A) is induced by a semilinear module isomorphism of (F, A).

Introduction. Let K be a prime (left) Goldie ring in which each finitely gener-
ated left ideal is principal. Then K is isomorphic to the endomorphsm ring E(F, A)
of a free module A, of finite rank, over a (left) Ore domain F (3, 8, 8]. We examine
the uniqueness of this representation in the following sense: What are necessary and
sufficient conditions such that, whenever K = E(F, A) = E(G, B) (with A, B free
and finitely generated over domains F' and G), every isomorphism of E(F, A) upon
E(G, B) is induced by a (semilinear) module isomorphism of (F, A) upon (G, B)?
We are able to show (Theorem 3.1) that this is precisely when all minimal right
annihilators of K are mutually isomorphic (as right K modules), or equivalently
when K is isomorphic to E(F, A) with F, a semiprincipal left ideal domain. A key
point is showing that K is a Baer ring (Lemma 2.3).

If “semilinear module isomorphism” is understood to include mappings between
extensions of the underlying modules (F, A) and (G, B) then every isomorphism of
E(F,A) onto E(G, B) is induced by a semilinear module isomorphism (Theorem
3.2).

1. Definitions and preliminaries. All rings have identity elements. The left
module A over the ring F will be denoted (F, A) and its endomorphism ring (op-
erating on the right of A) will be denoted E(F, A). (A, E) will denote the right E
module A. The statement that (F, A, E) is a bimodule indicates that A is to be
considered as a left F module and a right F module.

The arguments of Baer [1, Proposition 5, p. 176] with minor modifications can
be used to prove

LEMMA 1.1. If there is an idempotent e in E = E(F, A) such that Ae is free
and cyclic, then the bimodule (F, A, E) is isomorphic to the bimodule (eEe,eE, E)
tn the following sense:

(1) F and eEe are isomorphic rings, A and eE are isomorphic additive groups,
and there is a semilinear module isomorphism of the left modules (F,A) and
(eEe,eE).

(2) There is an E isomorphism of the right modules (A, E) and (eE, E).
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LEMMA 1.2. Let (F, A) possess a free cyclic summand, where F is a domain,
and let E = E(F, A) be its endomorphism ring. If eE and fE are E-isomorphic for
each pair of primitive idempotents e, f in E, then every indecomposable summand
of A 1s free and cyclic.

PROOF. Let S be an indecomposable summand of A, and f an idempotent in
E such that S = Af. Let e be an idempotent for which Ae is free and cyclic. Then
e and f are primitive since Ae and Af are indecomposable summands of A. By
Lemma 1.1, there exists a bimodule isomorphism ¢ of (F, A, E) onto (eEe,eE, E).
Hence (Ao)p = (A¢)o = (eE)o, for each 0 € E(F,A). If we let 0 = f then
S¢ = (Af)p = (eE)f = eEf. Since eE and fE are E-isomorphic, it follows that
eEf is free and cyclic over eFe [7, Lemma 2.3, p. 326]. Since ¢ is a (semilinear)
module isomorphism of (F, A) and (eEe,eE), S must be free and cyclic over F.

2. Prime, Goldie, semi-pli rings. A ring K is a pli ring (semi-pli ring), if
each left ideal (finitely generated left ideal) is a principal left ideal.

A nonzero left module is uniform if any two nonzero submodules have nonzero
intersection.

We shall say (F, A) € &, if F is a domain, and (F, A) is a finitely generated free
module. If (F,A) € &, then E(F, A) is prime. Results of Goldie [3], Robson [8]
and Jategaonkar [6] (see also [4, Chapter 4]) imply that

(1) If (F,A) € &, then E(F, A) is a (left) Goldie ring if, and only if, F is (left)
Ore.

(2) If K is a prime Goldie semi-pli ring, there exists a module (F, A) € & such
that K = E(F, A).

The proof of Lemma 4.11 of Chapter 4 of [4] shows that A may be chosen as any
minimal right annihilator of K. (We do not need the specific identification of F.)
If ¢ is the isomorphism of K onto E(F, A) then for k € K, zk® = z - k, for each
z € A.

We need the following slight generalization of a result of Jategaonkar [6, Propo-
sition 2.11, p. 51]. His arguments can be followed with minor modifications.

LEMMA 2.1. Let (F,A) € &, with A free on n generators. If E(F,A) is a
Goldie semi-pli ring, then for every set Ji,Ja,...,Jn of nonzero finitely generated
left ideals of F, we have J; & Jo & - - - @ Jy, 1is isomorphic (as a left F-module) to
(F,A).

REMARK 1. If E(F,A) satisfies the hypothesis of the lemma, each finitely
generated left ideal of F is projective. Hence each finitely generated submodule of
A is projective.

A ring in which each left annihilator ideal is a principal left ideal generated by
an idempotent is called a Baer ring (the terminology is due to Kaplansky). The
proof of the following is straightforward and will be omitted.

LEMMA 2.2. Let K be a Baer ring, and e an idempotent in K. Then the
following are equivalent:

(1) e is primitive.

(2) eK is a minimal right annihilator.

(3) Ke is a minimal left annihilator.
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If S is a submodule of A, L(S) will denote the left ideal of E(F, A) consisting of
all o in E(F, A) for which Ao C S. For 7 in E(F, A), Z(r) will consist of all p in
E(F, A) for which pr = 0, while N(7) will be the submodule of A consisting of all
a in A for which ar = 0.

LEMMA 2.3. If K is a prime, Goldie, semi-pli ring, then K is a Baer ring.

PROOF. K = E(F,A) where A is free of finite rank n, over an Ore domain
F. If J is a left annihilator ideal of E = E(F,A), then J = Z(0), 0 € E |2,
Theorem 3.7, p. 208]. But .Z(¢) = L[N (0)] follows from the relevant definitions.
We shall show that N (o) is a summand of A, from which it will follow that L[N (o)]
is generated by an idempotent. Since A is finitely generated, so is Ac. By Remark
1, following Lemma 2.1, Ac is projective. Since Ao = A/N (o), it follows that N (o)
is a summand of A. The fact that L[N(o)] is generated by an idempotent now
follows as in the first part of the proof in 1, Proposition 1, p. 178].

3. The main theorems.

THEOREM 3.1. Let K be a prime left Goldie semi-pli ring. The following
statements are equivalent:

(1) If K = E(F,A), K = E(G, B) with (F,A),(G,B) € &, then every isomor-
phism of E(F, A) upon E(G, B) is induced by a semilinear module isomorphism of
(F,A) upon (G, B).

(2) All minimal right annihilators of K are isomorphic (as right K modules).

(3) All minimal left annihilators of K are isomorphic (as left K modules).

(4) All finitely generated uniform left ideals of K are isomorphic (as left K
modules).

(5) There exists a semi-pli domain F, and a module (F,A) € & such that
K = E(F,A).

PROOF. (1)=(2) Let J;, J2 be minimal right annihilators of K, so that J; = eK,
J2 = fK with e, f primitive idempotents of K (Lemmas 2.2, 2.3). By item (2)
preceding Lemma 2.1, there is an isomorphism « of K onto E(F,eK) such that if
ke K, zk® = z - k, for all z € eK, and an isomorphism 8 of K onto E(G, fK)
such that if k € K, yk®? =y -k for all y € fK.

Clearly ¢ = a~ ! is an isomorphism of E(F,eK) onto E(G,fK). For each
ke K, k® =0 € E(F,eK), so that

0® = (k*)* P = kP € E(G, fK).
By assumption ¢ is induced by a semilinear isomorphism p of (F,eK) upon (G, fK).

In particular,
1

yo? =y(p~lop), for each y € fK,
or letting y = zp, for z € eK, we have
(zp)o® = z(op) = (zo)p, for each z € eK, or (zp)k? = (zk*)p.

Hence

(zp) -k = (z-k)p, for each z € eK,
so that p is a K-isomorphism of the right annihilators eK and fK.
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(2) = (5) By items (1) and (2) preceding Lemma 2.1, K = E(F, A) with (F, A) €
& and F, a left Ore domain. Now let J be a nonzero finitely generated left ideal of
F. Since F is an Ore domain, J is an indecomposable F' module. By Lemma 2.1,
there exists an F-module @ such that (F,J & Q) = (F, A). Under this isomorphism
J maps onto an indecomposable summand of A, which is free and cyclic by Lemma
1.2. Hence J must be a principal left ideal.

To prove (5) = (1), Let (F,A),(G,B) € & with K = E(F,A) = E(G,B).
Let K = E(Fy, Ag) with (Fp, Ag) € &, and Fy a semi-pli domain. Then of course
E(Fy,Ag) = E(F, A). By results of Jategaonkar [6, Theorem 1.6, p. 37, Proposition
1.8, p. 40, and Lemma 2.8, p. 49 this latter isomorphism is induced by a (semilinear)
module isomorphism of (Fp, Ag) onto (F, A). In particular, F is a semi-pli domain.
Now we can apply the same argument to the isomorphism of E(F, A) and E(G, B)
to conclude that it is induced by a semilinear module isomorphism of (F, A) upon
(G, B).

(2) & (3) If e, f are idempotents in any ring K, then eK = fK if, and only if,
Ke = K f [5, Corollary, p. 51].

(4) ¢ (5) is a result of Robson [8, Theorem 5.3, p. 627).

REMARK 1. The restriction that F and G be domains is essential. Let F' be a pli
domain, and G = E(F,F(™), n> 1. Let B=G™), m > 1, and A = F(™™). Then
E(F,A) and E(G, B) are isomorphic prime, pli rings, with F, G, nonisomorphic pli
rings.

REMARK 2. Swan [9, Lemma 1, p. 57] gives an example of an (F', A’) € & for
which E(F’, A’) is a pli ring, but F’ is not a pli domain.

Theorem 3.1 then implies that if K = E(F’, A’) is the ring of Swan’s example
there exist (F,A) and (G,B) € &, with K = E(F,A),K = E(G, B) but with
an isomorphism of E(F, A) upon E(G, B) which is not induced by a semilinear
module isomorphism of (F, A) upon (G, B). In fact it is shown in [10] that there
exist (F, A), (G, B) € & with K = E(F, A) = E(G, B) but F # G, so that there is
no (semilinear) module isomorphism of (F, A) upon (G, B). Nevertheless, even in
this case, every isomorphism of E(F, A) upon E(G, B) is induced by a (semilinear)
module isomorphism if we are willing to include mappings between extensions of
the modules (F, A) and (G, B).

THEOREM 3.2. Let K be a prime (left) Goldie semi-pli ring, such that K =
E(F,A), K = E(G, B) with (F,A),(G,B) € F. Then, there exist modules (F, A),
(G, B), which are extensions of (F, A) and (G, B) respectively, such that every iso-
morphism of E(F, A) upon E(G, B) is induced by a semilinear module 1somorphism
of (F,A) upon (G, B).

PROOF. Assume that (F,A),(G,B) € &, and E(F, A) and E(G, B) are iso-
morphic Goldie semi-pli rings. Since F and G are Ore domains, they have quotient
division rings F and G. Let A = F ®f A, and B = G ®g B. Then A and B are
(left) vector spaces over F and G respectively and with the usual identification,
(F,A) and (G, B) are embedded in (F,4) and (G, B), and E(F, A) and E(G, B)
are embedded as (left) orders in E(F, A) and E(G, B) respectively [6, Proposition
2.14, p. 20]. If ¢ is an isomorphism of E(F,A) upon E(G,B), it has a unique
extension to ¢ an isomorphism of E(F,A) upon E(G,B). Hence there exists a

one-one semilinear transformation p of (F,A) onto (G, B) such that 0% =p~lop




for
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each 0 € E(F,A) [1, Theorem 1, p. 183]. In particular 0® = p~lop for each

o € E(F, A).
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