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ABSTRACT. Let A denote a symmetric, solid Banach sequence space having

{e,}^, as a symmetric basis and considered as a Banach lattice with order

defined coordinatewise. A complete description of the relationship between

regular and Dunford-Pettis operators T: ¿'[0,1] —» A is given. The results

obtained complete earlier work of Gretsky and Ostroy and of the author in

this area.

1. Introduction. If X and Y are Banach spaces, a bounded linear operator

T: X —* Y is called a Dunford-Pettis operator (or, as we write, a D-P operator) if

T maps weakly convergent sequences in X to norm convergent ones in Y. In the

case where X and Y are Hubert spaces such operators were once called "completely

continuous", but the terminology gradually disappeared in favor of the notion of

a compact operator (with which it agrees when the domain of the operator is a

reflexive Banach space). In general, however, compactness of an operator is a more

restrictive condition, a fact which is rather dramatically apparent in the case of

operators defined on I1, all of which are D-P. The term "Dunford-Pettis operator"

was introduced by Grothendieck [8] in view of the pioneering work of Dunford and

Pettis [3] in investigating the properties of such operators on L1 and C(S)-spaces.

Due to its importance for various applications subsequent work has continued to

focus on understanding the structure of D-P operators from the space L^O, 1] to

various specific, as well as general, Banach spaces (e.g. [1, 2, 5, 6, 7, 9, 11, 13, 14,

16]).

A particular case in point is the paper of Gretsky and Ostroy [6] on D-P op-

erators from L1[0,1] to certain Banach lattices. Motivated by considerations of

mathematical economics [5] they showed that every regular operator (i.e. a dif-

ference of positive operators) from ¿'[0,1] to a Banach lattice having an "order

compatible" Schauder basis is a D-P operator; in particular (their case of greatest

interest) every regular operator from L^O, 1] to c0 is D-P. In a recent paper [9] the

author showed the converse of this last result is also true, so the D-P operators

from L1[0,1] to cr, are precisely the regular operators.

The question which now arises is whether the converse of the Gretsky-Ostroy

theorem is true in general. In particular, suppose A is a symmetric, solid, Banach

sequence space (i.e., if {ai}°^x G X then {an^)}°^x G X for any permutation tt, and

if |&t| < |a¿| for all i then (¿>¿) G A). Suppose, too, that the unit vectors {ej}jL1

in A, defined by ej = {oij}°^i, form a symmetric basis for A and that the order
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on A is defined by {ai}°lx < {6¿}¿^i <=> a¿ < 6, for all i. Then {ej}'?L1 is an

order compatible basis for A, so every regular operator T: L1[0,1] —* A is D-P.

The question we consider is the converse: Is every D-P operator T: L^O, 1] —> X a

regular operator?

The purpose of the present paper is to give a complete solution to this problem.

The interesting aspect of the solution itself is the fact that the positive answer

obtained for the case A = cç, mentioned above is completely atypical, in the following

sense: If A = Xxx then every bounded linear operator T: L*[0, 1] —► A is regular,

while if A ^ Xxx (the case of en) then the only time every D-P operator T: L1[0,1] —►

A is regular is when X = cr,; hence the result proved in [9] is more fortuitous than

characteristic. Finally, we show that for any A every weakly compact operator

T: L1[0,1] —► A is regular, a satisfying result pertinent to this questions since every

such weakly compact operator is a D-P operator [10, p. 182].

2. If £7 and F are Banach spaces we denote the set of all bounded linear operators

from E to F by ¿f(E,F). If E is a Banach space and x G E, we denote the

norm of x in E by ||x||£. In the case where E is Lp or V for 1 < p < +00, we

will write \x\e = \\x\\p- Throughout the paper A will always denote a symmetric,

solid, Banach sequence space in which the unit vectors {ej}f!L1 form a symmetric

Schauder basis and in which the order is defined coordinatewise (as we outlined in

§1). In particular, then, {e,-}^ is an order compatible basis for A, so every regular

operator T: Lx\0, ll —» A is a D-P operator.

Recall that the Kóthe dual of A is the sequence space

f

A* =    {bi}r=iy^ |a,||6,| < +00 for all {oj}^., in A

x=l

By the Uniform Boundedness Principle and the fact that {e¿}^j is a basis for A it

follows that Xx may be identified with the dual space A* of A. Hence we consider

Xx as a Banach space with norm defined by

||{6i}-1|Ux=supi¿|aí||6í

I ¿=1
IIR}£ilU<i

Note that unless {e^}?^ is a basis for Xx we will not generally have Xxx = A**,

although we always have A C Xxx. Those space A for which Xxx = A are called per-

fect. (For more detailed information on such matters see §30 of the book Topological

vector spaces. I, by G. Köthe, Springer-Verlag, 1969.)

We begin with the following observation about operators from L1 [0,1] to A which

will be seen to lead naturally to our main results.

THEOREM l.   IfT: L^O, l] —» A is any bounded linear operator, then

{\\rei\\i}Ziexxx.

If {\\T*ei\\i}?li G X, then T is a D-P operator.

PROOF. Since T G £?(Ll [0,1], A), T* : Xx -► L°°[0,1] is both norm and weak*-

continuous. If {ai}°lx G Xx with IKaiJ-^ilU1 < 1 then ^2°lx £xaiCi is weak* conver-

gent to {E%ai}(^=x for every sequence {e¿}°^, with |e¿| = 1, and || ^¿=i £¿a»et|U* < 1
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also. Therefore E¿^i Sia{T*ei is weak'-convergent in L°°[0,1] and

y^£¿q¿T*e, < iiri

From the definition of the norm in L°°[0,1] it follows that Y%L\ kl|T*e¿(í)| < ||T*||
a.e. in [0,1], so by the Dominated Convergence Theorem the series YliZi \ai\\T*ei\

converges in L1 [0,1] and || E,~ i |o¿||T*e¿|||i < ||T*||. But then ^i |a¿|||r*e¿||i <

||T*|| for all (ai) G Xx with ||(a^)||A31 < 1, and by definition it follows that

{||T*«iHl}£i € A**.

Now suppose {llT'eiHiJ^j is actually in A C Xxx. It is well known that

T: L1^,!] -> A is a D-P operator if and only if Toi: L°°[0,1] -* L^O, 1] -»

A is compact [1] (where i: L°°[0,1] —► Lx[0,1] is the canonical injection map).

Since {HT'eilli} G A and {*}£, is a basis for A, ||E,"„ l|r*ei||ie<|U r* 0 as
n -* oo. Therefore | Y£ín a¿llT""et||i| -> ° uniformly over IKoJ^Ja* < 1,

so given £ > 0 choose n so that | X^=naîll^'*e»llil < £ wr an IKa¿)llAx

< 1. Then \T,Zna*(T*ei'9)\ < £ whenever ||(a,)|U* < 1 and Wg]^ < 1, or

\{zZZn{Toi(9),ei)e,,{al}°g1)\ < s whenever ||(a<)|U* < 1 and HffH«, < 1. That is,
|| X^n(-^0î(i?)>e*)e»llA —* 0 as n —> co, uniformly over g in the unit ball of L°°[0,1],

so {To zf/IHgHoc < 1} is conditionally compact in A [4, p. 260]. Therefore Toi is

compact and it follows that T is a D-P operator.

It is natural to ask whether the converse of the last assertion of Theorem 1

is true, and hence whether it is possible to characterize the D-P operators from

Lx[0,1] to A by the condition that {117^11}°^ G A. According to the first part of
Theorem 1 this will be true whenever A = Xxx, and it was shown in [9] to also be

true when A = cp. It turns out, however, that this is not always the case. In fact,

(as in the case A = c0 in [9]) the condition {||T*e¿||i}¿^1 G A actually characterizes

the regularity of operators from L^O, 1] to A.

THEOREM 2.  T: L1^1] ~> A is regular o {\\T*ei\\i}^i G X.

PROOF. (=>) To show that a regular operator T: L^O, 1] —» A has the property

that {||T*e,||i||} G X, we need only show this is true whenever T > 0. There-

fore, suppose T: L1[0,1] —► A is a positive operator. Then T is a D-P operator

[6], so Toi: L°°[0,1] -* L^O, 1] -+ A is compact [1]. We showed in Theorem 1

that then \J2iln(T*ei,9)ai\ —* 0 as n —► oo, uniformly over g G L°°[0,1] with

IMIoo < 1 and {ai}°Zx e A* with IKaJgJU*  < 1, and since T > 0 we have
T*e¿ > 0 a.e. in [0,1] for all i = 1,2,_   Given any e > 0 choose N so that if

n > N then | E~„(T*e¿, M)|ai|| < £ whenever yi«, < 1 and HRI^Ha* < 1.
That is, |(E~„|ai|T-ei,|0|)| < s for all yi«, < 1 and all IKaJ^JU* < 1, so
Il EHU |oi|T*ej||i < £ whenever n > N and ||{a¿}£ilU* < 1- But since T*e¿ > 0
a.e. this says that E¿^n |a¿|||T*e¿||i < e whenever ||(a,)||,\x < 1 and n > N, so

E~i ||T*ei||ie¿ converges in A; that is, {HT'e^i}^ G A.

(<=) On the other hand, suppose T: L1^,!] — A and {HT'e^i}^ € A. To

show T is regular we first show that we can define a bounded linear operator

|T|: L^O, 1] -► A by |T|(/) = {(/, |T*e,|)}£i- To do this, let e > 0 be given, let

/ G l/fO,1], and choose g G L°°[0,1] so that ||/ - g\\i < e/2||T||.  Then for any
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n > 1 and any {üí}'^1 G Xx we have

X></,|T*ei|>< J2\at\\(f-g,\T*ei\ + Eloilfoir**!)

Now E^i o,{T*ei is weak*-convergent in L°°[0,1] for every {aj}^  € A1 and

IIE^iat^Hoo < ||T*|| whenever \\{ai}«Lx\\x* < 1. That is,

ess sup Y^£iaiT*ei(t)
i=\

<\\T*\\

for all ||{a»}||A* < 1 and for all {e¿} with |e¿| = 1; it follows that || E^i laí||T*e¿|||oo

< ||T*|| = ||T|| for all such {a,} G Xx, and hence that | Y™ln |a¿|(|T*e¿|, f -g)\<

||/ - <7||i||T|| < e/2 whenever IK^^iHa1 < 1, and for all n. Moreover, since

{|lT*et||i}£i e A there is an integer TV such that if n > N then || E~„ ||T*e,||e,||A

< t:/2||g||0o. Therefore if n > N and IKaJIU* < 1 it follows that

Ela'KIT*e*U><llffl|oo¿la<lllr*e'll1<llffll2|M¡
E

2'

soifn > W we have, by the above, that | Ei^„a»(/> lT*e¿l)l <£ for all ||{a¿}°^,|U*
< 1. Hence the sequence {(|T*e¿|, /)}^j is in A for all / G Ll{0,1], so the operator

\T\: Ll[0,l] — A for which |T|(/) = {(\T*et,f)}°tx is well defined and bounded.

Now clearly |T| > T and |T| > -T (since if / > 0 in L1 [0,1] then

\(Tf,ei)\ = \(T*el,f)\ = \( T*et(t)f(t)dt\< f  \T*ei\(t)f(t)dt = (\T*et\,f)
\Jo I     Jo

for all i), so we have T = ((\T\ + T)/2) - ((\T\ - T)/2), a difference of positive

operators, and T is regular.

COROLLARY. IfT: ¿^[0,1] —► A is a bounded linear operator and Xxx = A, then

T is regular and a D-P operator.

We see in Corollary 1 the essential simplicity of the case A = Xxx, while if

A ^ Xxx the relationship between regular operators and D-P operators becomes

more interesting. In all cases regularity implies the D-P property [6], and when

A = Co it is known that the converse also holds [9]. Surprisingly, this turns out to

be the only such case (i.e. where A ^ Xxx) for which this is true.

THEOREM 3. If X¿ Xxx then every D-P operator T: L^O, 1] -> A is a regular

operator <=>■ A = Co.

PROOF. As we have already mentioned, if X = cq then every D-P operator is

regular.

Suppose, then, that A / Xxx and that A ̂  cq. To show there is a D-P operator

which is not regular we need only demonstrate (by Theorem 2) a D-P operator

T: L^O, 1] -► A for which {H^Hi}^ £ A.
We first note that since A / c0 it follows that Xxx ^ l°°. Otherwise, if {cí}^x G

l°° then {a}°gx G Xxx so ES, MN < Ueofiih- whenever ||{fr,-}£ilU" < 1;
in particular this would be true when c¿ = 1 for all i, implying {bi}'£L1 G I1 for
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all {°i}iZi € Xx and hence that Ax = Z1 (since I1 C Xx in all cases).   But then

whenever {c¿}¿^j G cç, and p < q

E CvCi — SUP \\{bi)Zi\A* i< 1

<sup{ ^|cí||6¿| \\{bi}?=ih<K

for some constant A:, (since A1 is isomorphic to Z1 by the above). Since this last is

< Ä"supj>p |cj| —► 0 as p —» oo it follows that {c¿}¿^j G A and since A C Co (always)

we have X = cq, a contradiction. Therefore, it must be that Xxx ^ l°°. From this

we also see that Xxx must be a subset of cq. If not, there is a sequence {a*}?^

in Xxx but not in cq, and hence an e > 0 and a subsequence {ai^^i of {ai}^x

for which |a¿J > £ for all k. Since Xxx is both symmetric and solid the sequence

{|a<i I) |°i2|, • • • } is also in Xxx and hence so is any bounded sequence {bj}j?=1 since

we can write {bj}jLt as the sequence

/  h b2 bk l v N  <. 1        .i 1 ̂  .
i 1-r°«i'i-i°i2»--->i-;a,ik,... >,    where sup-, < -sup \bk\ < +00.
I |a¿i I        |a¿2| |o«J J k   |a¿J      e   k

That is, Z°° C Xxx and since the reverse inclusion always holds we would have

l°° = Xxx, a contradiction to the above result.

Now let {rn}%Li denote the set of Rademacher functions on [0,1] [15, p. 396].

It is well known that these functions have the property that Urnlloo = ||»V»||i = 1)

n — 1,2,3,..., and {rn}%Li is an orthonormal sequence in L2[0,1]. Choose any

sequence {an}^=i in Xxx but not in A, so as we noted above {an}%Li G cq. For

any function g G L2[0,1] the sequence {(»"n,9)}^Li G I2 C Co, so since ||rn||oo = 1

for all n it follows by a standard approximation argument that for any f G L1 [0,1]

the sequence {{rn,f)}%Li G c0. Hence the sequence {an(rn,/)}JJL1 S A for all

f GL1^,!], since

^2an(rn,f)en
n=p

= sup\ J2 \an\\{rn, f)\\bn\ ||{6„}~=1|U.<1

< sup|(rn,/)|sup^ ^2 \a„\\b„ IKMSLilU

'•n,/)|-||K}~=1||A"-0asp^

and so we can define a bounded linear operator T: L^O, 1] —> A by

< 1

< sup I
n>p

CO,

Tf~ ^¡2<*n{rn,f)en.
n=l

Clearly T*en = anrn for n, so {||T*en||i}~=1 - {|an|}~=1 yÉ A, and by The-

orem 2 it follows that T is not regular. To see that T is a D-P operator, re-

call that if i: L2[0,1] —► ¿x[0,1] is the injection map, then T is a D-P opera-

tor <*■ T o i: L2[0,1] -» ¿^[0, 1] —► A is compact [1], and this last is true o
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EnLi (^ ° l(/)i en)en converges in A uniformly over / G L2\0,1] with

p. 260].
If / G L2[0,1] and II/H2 < 1, then for any TV we have

<1 [4,

^(roit/),e„)c„

n=N

/ , o,n\rn, j)en

n=N

sup
|{MIIa*<i

ËK||6„||(rn,/)|.
n=N

Since {{(i*n,/)}^=il||/||2 < 1} is precisely the unit ball in I2 (recall {r„} is an O.N.

sequence in L2[0,1]) it follows that

sup
imi2<i

/ d  O-nyni Jl^n

n=N

<

<

sup
{6„}||x*<l

/ J anunen

n = N

-,1/2

sup |a„||6n|
n>N

< sup \an
n>N

l/2i

sup
l|{6n}|U*<l

,1/2
Ia

00

£
&n I j ̂ n I

1/2

where this goes to zero as TV —> 00 since {o„} G en- Hence || E^Ljv an(^n, f)zn\\\ —*

0 uniformly over ||/||2 < 1 and, as we remarked above, it follows that T is a D-P

operator which is not regular.

The results given here (along with the Gretsky-Ostroy Theorem) provide a com-

plete description of the relationship between D-P operators and regular operators

from Ll[0,1] to A; in particular, when A ̂  Xxx and A ^ cq> there always exist D-P

operators from Ll[0,1] to A which fail to be regular. In contrast we now show that

in all cases every weakly compact operator is regular. The significance of this result

in the context of those obtained previously lies in the fact that every weakly com-

pact operator T: Ll\0,1] —► A is a D-P operator [10, p. 182], thereby illustrating

the fundamental difference between weakly compact and D-P operators in the case

where A ̂  Xxx.

THEOREM 4.   Every weakly compact operator from Ll[0,1] to X is regular.

PROOF. Let T: Ll\0,1] —► A be a weakly compact operator. According to

Theorem 2, T is regular if and only if {HT*^!}^ G A, while by Theorem 1

{ll^eilli}^! e Xxx in any case.

Suppose {IIT'eilli}^ G Xxx, but is not in A. Then E"i MT*e¿||x converges

pointwise, but not uniformly, over vectors {bi}^i is the unit ball of Xx. Hence

there is some £ > 0 and an increasing sequence {pk}kLi 0I" integers for which

HEf=p' + i ll^""e»llie»IU > £, & = 1,2,...; correspondingly, there is a sequence of

%  |T*e,-||i >efor
L(fc)- kWiunit vectors {6^ }~n k = 1,2,..., in Xx for which EZ+Pk + i \K

all k.

It is well known that the injection mapping i: L°°[0,1] —► L^O, 1] is weakly com-

pact and hence a D-P operator [10, p. 182], so if {Ei£p¿+i \bl,h)\\T*el\}kx>=x were

weakly convergent to zero in L°°\0,1] then it would converge to zero in Ll[0,1];

but this would say {E^ + i lt!'°lll:r*e»lli}k1Li -* 0, a contradiction to the above.

Hence it must be that {Ef¿p'+i l^ll^*e«l}fc^i 's n°t weakly convergent to zero in

L°°[0,1]. Now L°°[0,1] is order-isomorphic to a space C(S) of continuous functions
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on some compact Hausdorff space S [4, p. 445]. If, under this isometry, T*e, corre-

sponds to fi G C(S), then |T*et| corresponds to |/¿| and by the above the sequence

{Ef=pfc + i \bt U/ti} does not converge weakly to zero in C(S). Consequently there

is some point so G S so that {E^pi , \b\ ll/i(so)|} does not converge to zero [4,

p. 265]. Choosing numbers e\k) so that £(k)b(k}fi(s0) = \b¡k)\\fi(s0)\ for all i and

k we then see that {Efipî + i £\ °\ fi}kLi does not converge weakly to zero in

C(S). However the sequence {Ef^ + i e, b\ el}kX3=x is weak*-convergent to zero

in Ax, so since T* is weakly compact the sequence {E?¿pi + i £\ b¡ T*ei}\KLx must

converge weakly to zero in L°°[0,1], implying {Ef¿p¿ + i s% b\ fi}kLi converges

weakly to zero in C(S), and we reach a contradiction. Therefore it must be that

E~i bi\\T*et\\i converges uniformly over ||{6,-}|U* < 1, hence that {\\T*ei\\i}°gx G

A, and T is regular.

REMARK. The converse of Theorem 4 is, in general, not true. For example, if

fn = X[o,i/n] for n = 1,2,... then {fn}„%i is weak*-convergent to zero in L°°[0,1]

so T = E^°=i fn ® en is a positive linear operator from Lx[0,1] to cq, yet since

{fn} does not converge weakly to zero in L°°[0,1] (any convex combination of

the functions fn has norm 1 in L°°[0,1]) we see that T*, hence T, is not weakly

compact.
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