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ABSTRACT. We give conditions on a CR submanifold M in C" and a compact

submanifold TV c M such that the average value on A7 of a CR function

on M can be estimated uniformly by the ¿'-norm of the CR function on a

neighborhood of N in M. The conditions involve the Levi form of M and the

transversality of N to the holomorphic tangent bundle of M.

1. Introduction and statement of results. If / is a holomorphic function

on a domain fi in Cn and if fii € fi C fi then it is well known (see [H, Theorem

2.2.3]) that there is a constant K which depends only on fii and fi with

a-i) \m\<K\ ll-^'(n)

for all z G fii. If A is a closed submanifold of fi, then one can easily integrate (1.1)

over N to obtain the following subaveraging estimate

(1.2)
/.

fdoN
N

<Äll/IU"(n)

where fi C fi is an open set which contains N and K depends only on/V, Í1 and

fi. Here do^ is surface measure on N.

Now an estimate analogous to (1.1) for CR functions on a CR submanifold

M generally fails. For example on a strictly pseudoconvex real hypersurface, the

existence of peak functions implies that (1.1) fails. It is then natural to investigate

whether or not the subaveraging estimate (1.2) holds for CR functions. This paper

carries out this investigation. Our result (Theorem 1.1 below) in particular implies

that if M is a real hypersurface whose Levi form does not vanish at each point

of N C M, then the subaveraging estimate holds provided N is always transverse

to the holomorphic tangent bundle to M. Thus, there are plenty of cases (e.g.

M strictly pseudoconvex) in which the subaveraging estimate (1.2) holds but (1.1)

fails. Counterexamples (to (1.2)) are provided in §3 in the case when N is not

holomorphically transverse.

Our theorem handles the case when codimnM > 1 and therefore we need some

additional notation before we can state our result.

Let M be a smooth generic CR submanifold in Cn with codimR.M > 1. Let

H(M) be the holomorphic tangent bundle of M with fibre HP(M), p G M. We

also let Np(M) be the space of vectors which are orthogonal (under the Euclidean

metric in R2™) to the real tangent space of M at p (TP(M)) and we let

TTp:Tp(R2n) - Np(M)
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be the orthogonal projection. The first Levi form .Sp: HP(M) —► NP(M) is defined

by
2Cp(Xp) = ttpJ[X, JX]P,        Xp G Hp(M),

where X G H (M) is any vector field extension of Xp and J is the usual complex

structure map on R2" ~ Cn. Note that ttpJv G NP(M) for v G TP(M) and

TTp(Jv) / 0 if and only if v £ HP(M). We let Tp be the convex hull of the image

of -2p in Np(M). The cone Tp essentially determines the size of the normal cross

section of the open set to which CR functions on M extend as holomorphic functions

(see [BP]).

Now we are in a position to formulate our main theorem and some of its conse-

quences.

1.1.  THEOREM.   Let N be a compact submanifold of M o/dim.R N > 1, without

boundary.  We assume the following on TV and M :

For each p G N C M, the interior   of Fp    (with respect to the

topology on  NP(M)) is nonempty.
(1.3a)

(1.3b) For each pGN, wpJTp(N) n {intrp} ¿ 0.

Then for a given neighborhood oj of N in M there is a constant C = C(N,u>) such

that for each CR function f on uj

Í fdoN  <C [ \f\dcrM,
Jn Ju

(1.3c)
in

where do^¡,daM ire surface measures on N and M, respectively.

When M is a real hypersurface with nonvanishing Levi form, requirement (1.3a)

is automatically satisfied because NP(M) is just a one-dimensional line which is

normal to M. If N C M is a compact submanifold of M without boundary with

Tp(tV) transverse to HP(M) (i.e. Tp(tV) £ HP(M)) then requirement (1.3b) is

satisfied. Thus we have the following important corollary.

1.2. COROLLARY. Let M be a real hypersurface ofCn and N C M a compact

submanifold of M without boundary, dmiR,TV > 1, such that 3p(M) ^ 0 for each

p G N. If TP(N) c¿ HP(M) for each p G TV, then the conclusion of Theorem 1.1

holds.

Another special case of Theorem 1.1 is the following.

1.3. COROLLARY. Let M be a CR submanifold o/C™ with codimRM = k > 1.
Let N c M be a submanifold of M with diniRTV = k and such that (1.3a) holds.

IfTp(N) n HP(M) = 0 for each p G N then the conclusion of Theorem 1.1 holds.

To prove the above corollary, we note that if Tp(N)nHp(M) = 0, then ttpJTp(N)

= NP(M) and therefore (1.3b) is satisfied.

If M is a convex hypersurface and N c M is a one-dimensional curve which is

the boundary of an analytic disc D which intersects M transversally, then estimate

(1.3c) follows easily. One merely thinks of D as part of a family of analytic discs

with boundaries in M and then by extending the given CR function to a holo-

morphic function to the inside of M, estimate (1.3c) follows from the subaveraging



SUBAVERAGING ESTIMATES FOR CR FUNCTIONS 119

properties of holomorphic functions (see [L and W]). Therefore our theorem is more

meaningful in situations where TV is not the boundary of some analytic object.

The next section is devoted to the proof of our theorem and the final section

contains some counterexamples to estimate (1.3c) in the case when (1.3b) is vio-

lated.

2. Proof of the Main Theorem. The outline of the proof is as follows. We

realize TV as the boundary of a manifoldf TV C C™ whose coordinate functions satisfy

a Cauchy-Riemann equation to infinite order at TV. The transversality condition

(1.3b) will ensure that N will be transverse to M. We then use Henkin's integral

kernels to represent the given CR function and with the help of Stoke's theorem,

we transfer the integration over TV which appears on the left side of (1.3c) to an

integration over N. The transversality of TV to M allows us to estimate Henkin's

kernels on TV and the estimate (1.3c) will follow.

Henkin's extension formulas. We fix TV c M and the open set w in M which

contains TV as given in the hypothesis of Theorem 1.1. We let / be a CR function

on oj. For each p G TV, assumption (1.3a) allows us to extend / as a holomorphic

function F defined on an open set (fp in C". The size of the cross section of (fp

is determined by the cone rp, which by definition is the convex hull of the image

of the Levi form 5fp:Hp(M) —► NP(M). More precisely, given any smaller cone

r' < rp there is an open set wp in M containing p and 6 > 0 such that

(2.1) wp + {r'nß(o,i)}c^.

Here, B(0,6) represents the ball centered at the origin (= p) in NP(M) and the

notation T' < Tp means that {I" n S} € Tp n S where S is the unit sphere in

NP(M).

Using Henkin's integral formulas (see [AH, Theorem 5.2.1]) we can write down

an explicit formula for F. We let D(p,r) be the set {q G M: \q — p\ < r}. There

is a choice of rp > 0,6 > 0 and the set u>p can be shrunk if ncessary so that if

Tp/2 <r <rp then

(2.2) F(w)= [ Ki(c,w)f(c)+ f K2(ç,w)f(ç)
Jc€D(p,r) Jced{D{p,r))

for w G lop + {V n B(0,6)}. Here Ki and Ki are explicit kernels and all we need

to know about these kernels is that they satisfy the following estimates:

(2.3) \K3(c,w)\<C/\ç-w\2n,     \VwKj(ç,w)\<C/\ç-w\2n+2,        j = 1,2,

which holds for c G D(p, r), w G wp + {r' n B(0,6)} and where the constant C is

independent of ç,w and r if say rp/2 < r < rp. The constant may depend on up,

T' and rp.

Extension of the submanifold TV. Assumption (1.3a) allows us to say that for each

p G M there is a nonzero vector vp G TP(N) so that the nonzero vector npJ(vp) lies

in the interior of Tp. Now we can locally parameterize TV by a C°° map G: Rk —* N

with 67(0) = p. We give coordinates (x,u) to Rk, with x G R, u G Rk~l chosen

so that G*(d/dx\0) = vp, where G* represents the differential of G. Since ttpJvp

lies in the interior of Tp, clearly we can choose a cone Tp' < Tp and an open set wp
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containing p such that

(2.4) TTpJ J G,
{x,u)

for all (x,u) GG'^LOpHN).

We give to C x Rfc_1 the coordinates (z,u) where z = x + iy G C and where

(x, u) are the coordinates of Rfc chosen above. We extend G(x, u) to G(z, u) in such

a way that (dG/dz)(x + iy,u) vanishes to infinite order at y = 0. In particular,

G satisfies the Cauchy-Riemann equations in the variable z when y = \mz = 0.

Therefore in view of (2.4) we have

p,(2.5) TTp^-(x + ¿o,u) = TTjp |^(x + io,u) J g rp' < r

for all (x,u)GG-1(cjpr\N).

Fix a 6' > 0 (to be chosen later). Define for 0 < t < 6'

¿VM< = {G(x + iy, u); (x, u) G G"1 (wp n A'), t < y < 6'},

Nt = {G(x + it,u);(x,u) GG_1(wpnTV)}.

Note that TV0 = TV n wp, and also note that the tangent cone of No,s' at G(x, u) is

spanned by the tangent space of TV at G(x,u) and by the vector (dG/dy)(x + i0,u)

for each (x,u) G G~1(ujp fl TV). Choose a cone Tp with T'p' < T'p < Fp. In view

of (2.5) and the above discussion, 6' > 0 can be chosen and ojp can be shrunk if

necessary so that

(2.6) %-cwp + {r;nB(o,¿)}

where 6 is chosen as in (2.1). Note in particular that (2.6) implies that iV0,¿' is

transverse to M. We choose an open set wp3p which satisfies the requirement of

(2.1), (2.2) and (2.6). We get an open cover {wp,p G TV} of TV. By the compactness

of TV we can extract a finite number of points Pj\lj=i with corresponding open sets

0JPj\lj=i which cover TV. We chose a partition of unity ipj\lj=x subordinate to the

cover u)j n tV|^-=1 (so ipj is only defined on TV n Uj).

We have

/ fdoN = ^2 / fvj3 daN = ^2 Fi^i d°N
J J=iJNnu,Pj j=ijNnulp}

where F3 is the holomorphic extension of / defined on ujPj +■ {Tp fl B(0, SPj)}. We

shall estimate each term in the above sum on the right and for simplicity we shall

drop the subscript j (so wp = u>P], T'p  = T'p, Fj = F and tpj = ip etc.).

Completion of the proof of the theorem.  Let <f>(x, u) be the smooth compactly

supported function in G_1(wp fl TV) c Rk defined by

4>dxdu = G*(ipdcjN)-

We extend <f> to <p(z, ujonCx Rk~1 so that (d(j>/dz)(z, u) vanishes to infinite order

at y = Im z = 0. We may also assume that 4>(x + iy, u) = 0 for y > 6'/2 where 6'

is the number in the definition of Nt¿'- We let

$ = G-1"{<p(z,u)dzdu}.
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We note that

f FTpdaN= f
J N J No

F3>.

So we shall obtain an estimate for /    F$ which is uniform in t > 0 and then let

Í-+0.
Using Stoke's theorem and the fact that $ vanishes on TVt for t > 6'¡2, we obtain

(2.7) f   F$=/       {dFA$ + FAd$).
Jn, Jñ, .,

Now F is holomorphic on a neighborhood of Nt,s' because Nt,s' C tV0i¿' C wp +

{T'p n B(0,6)} (see (2.6)). Therefore dF = dF in the first integral on the right of

(2.7) above. We pull this integral back via G to C x Rfc_1 to obtain

/      dF A $ = ¿ /   t< <6,    / ^(G(z,u))dGiA4>(z,u)dzAdu
JÑti6, ^[J    (z=x+iy) J(x,u)eRk °wl

(2.8) = 5/ / ^(G(z,u))^(z,u)(!>(z,u)dz/\dzAdu.
f^xJt<y<S' J(x,u)€Rk ÖWl ÖZ

For q G C™, let dist(g) be the Euclidean distance from q to M. We claim for some

c>0

(2.9) dist(G(x + ¿2/,tt)) >c|y|    for 0 < y < 6'.

To prove this estimate we note that G(x,u) G M and (dG/dy)(x,u) is a vector

which is transverse to M. This is because tV0,6 is transverse to M. More precisely,

the function G which parameterizes Na,6' satisfies the Cauchy-Riemann equations

at (x ■+ iO,u) G Rk, i.e. (dG/dy)(x + iO,u) = J((dG/dx)(x + iO,u)) and because

the vector (dG/dx)(x + iO, u) is an element of TP(M) but not an element of Hp(M)

where p = G(x,u). Therefore there is a positive constant c > 0 with

dist(G(a: + iy, u)) > c\G(x + iy, u) — G(x,u)\ >
dy

(x,u) M

and (2.9) is established.

In view of (2.9) and (2.3), we have that for ç G M

(2.10)

dK,

dw¡
(G(z,u),c) <

<

C

\G(z,u) - ç\^+2

C
<

C
dist(G(x+ iy,u))2n+2 - \y\2n+2

where G is a uniform constant which is independent of x, y, u and c.  In addition

dGi/dz vanishes to infinite order at y = 0. Therefore

(2.11)
dG,
— (x + iy,u)
oz

<C\y\
2n+2

for some uniform constant C. By inserting formula (2.2) for F into the right side

of (2.8) and then by using estimates (2.10) and (2.11), we obtain

(2.12) 3FA$ <G / \f(c)\da(ç)+ [ \f(ç)\da(ç)
Jc€D(p,r) JçedD(p,r)
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where the constant G is independent of / and t with 0 < t < 6' and r with

rp/2 < r < rp. Letting t —» 0 we obtain the same inequality as in (2.12) with t

replaced by 0.

The second integral on the right side of (2.7) is handled similarly.   We pull it

back via G to obtain

/     /Jt<y<6' J(x,u

a j

F(G(z,u)) — (z,u)dz A dz A du.
)eR" oz

Since dfy/dz vanishes to infinite order, one can repeat the above arguments and

estimate this term by the right side of (2.12). Thus combining these estimates for

both terms on the right side of (2.7) (with t = 0) we obtain

\LyjfdaN <C L \f(ç)\da(ç)+ [ \m\do-(ç)
í<ED{p,r) Jç€dD(p,r)

where the constant G is independent of / and r, rp/2 < r < rp. We now integrate

the above estimate as r goes from rp/2 to rp to obtain

\LipfdaN <C i
■/C€Di

\fd)\Mi)
ç€D(p,rp)

Since V (= ifrj) is an arbitrarily chosen element of the partition of unity, we may

sum over j, 1 < j < I and obtain the estimate

f fdo-N   <C [ \f\dOM
JN Juj

as desired.

3. Examples. In this section we give two counterexamples to estimate (1.3c)

if the assumption (1.3b) is violated.

The first example concerns the case where M is a hypersurface and TV is a curve

on M which is tangent at some point p to the space HV(M). Moreover we shall see

how the constant G in (1.3c) depends on transversality of TV with respect to the

complex tangent space of M. This all is done in C2 because the situation in C™ is

analogous.

The second example shows that if the codimension of M is higher than 1, the

assumption of transversality of TV with respect to the complex tangent space of M

is not enough. In this case, the constant G in (1.3c) reflects the extent to which

the spaces ttpJTp(N), p g N, lie inside to the convex hull of the image of the Levi

form. In the example given, the codimension of M is 2 and TV is a curve on M, but

analogous examples can be easily generated for any dimensions.

EXAMPLE 3.1. Let M be a hypersurface in C2 given by

where

(3.1)

M = {(zi,z2) G C2;Rez2 = |zi|   and (zi,lmz2) G B}

B = {(zi,y2) G C x R; \Zl\ < 1, |y3| < 1}.

Fix two positive, sufficiently small real numbers A, p.   For any a G R, a > 0,

define a closed curve Na passing through 0   =   (0,0),  and parameterized by
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z(t) = (zi(t),z2(t)), t G [—1,1], where z(—1) = z(l).  Moreover assume that the

parameterization satisfies two conditions:

(3.2) zi(t) = t,    z2(t) =t2 + iat       for |r| < A,

(3.3) Rez2(t)>p    for A < |i| < 1.

Notice that if a = 0 then TV0 is tangent to i/o (M) and if a > 0 then TVa is transverse

to this space.

For any positive e define the smooth CR function

fE(z) = l/(z2+£), ZGM.

Consider both integrals which appear in inequality (1.3c). By Gi, C2,... denote

some positive constants.

Upper estimate of the integral fM \fE\ doM-

(3.4) /   \fe\doM <Ci f [(\zi\2 +£)2 +y22]1/2dxidyidy2.
Jm Jb

The integral on the right of (3.4) can be estimated for small £ by

(3.5) j(E2+y2)-ll2dxidyidy2=TT j   (e2+y2)-"2 dy2 <-C2ln£.

Consequently, (3.4) and (3.5) gives

(3.6) f  \fe\daM<-CiC2ln£.
Jm

Lower estimate of the integral | fN0 fE ci<7jv|. Using (3.2) and (3.3) we obtain

(3.7) \f   f£daN\> [    -^— dt-C3> CA£-l>2 - G3.
\Jn° J-Xt¿+£

If £ is small, then (3.6) and (3.7) show that (1.3c) cannot be satisfied.

If a > 0, the following generalization of (3.7) can be proved:

/    fe doN
JNa

>C5(a4+E2)-1/4

where G5 does not depend on a and e. The last inequality together with (3.6) show

how the constant G in (1.3c) depends on a which reflects transversality of TVa with

respect to Hr,(M).

EXAMPLE 3.2. Let M be a real submanifold of C4 given by the equations

Re 23 = |2i |2,        Re z4 = \z2\2

for z G B = {z G C4;|2a| < 1,|j//j| < l,a,ß = 1,2} where za = xa + iya, a =

1,2,3,4. The complex tangent space Ho(M) is spanned by d/dzi and d/dz2. The

Levi form ¿¿o(ç) for ç = Çid/dzi + Ç2d/dz2 G H0(M) is

-So f  =<Ti?i-3—+?2Í2-s—
02:3 ¿714

and its image covers the first quadrant of the plane spanned by d/dxz and d/dx^.
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Fix two positive sufficiently small real numbers A, p. For any (a, b) G R2 define

a closed curve TV0,6 parameterized by z(t) = (2Q(i))c*=i,2,3,4, t G [—1,1], where

z(—1) = 2(1). Moreover assume that the parameterization satisfies the following

conditions:

zi(t)=t,    z2(t) = t,    z3(t) = t2 + iat,    z4(t) = t2+ibt       for |i| < A,

Rez3(t)>p,    Rez4(í)>p        for A < |t| < 1.

Notice that TV0'0 is tangent to H0(M) and if (a,b) ^ (0,0) then TV"-6 is transverse

to H0(M). If ab > 0 then TVa'6 satisfies (1.3b) in a neighborhood of the origin. If

ab < 0 then (1.3b) is not satisfied at the origin.

For any e > 0, c > 0, d > 0, (c,d) ^ (0,0) define the smooth CR function

f¡'d(z) = -\-, zGM.
e   v '     cz3 + dz4+£

Similarly as in the previous example, it can be shown that if ab < 0, say a > 0

and b < 0, then there exist some positive constants Gi,G2,G3 that for small e,

(3.8) i  \f¡'d\do-M<-Ciln£,     \f      f
Jm \JNa'b

c4dcr N >C2£-l'2-Cz

for c = —b, d = a if (a, b) ^ (0,0) or any positive c, d if (a, b) = (0,0). Consequently

inequality (1.3c) is not satisfied for small e.

If a > 0 and b > 0, a2 + b2 = 1, i.e. (1.3b) is satisfied in a neighborhood of the

origin, the following inequality can be proved:

inf   / fl'adoN >G4{[min(a,6)]4+c-2}4   ,21-1/4

where the infimum is over nonnegative c, d such that c2 +d2 = 1, and the constant

C4 does not depend on a,b and e. Notice that min(a,6) gives the angle between

the line TTr,JTo(Na'b) and the closest side of the complement of the image of the

Levi form. The last inequality together with the first inequality (3.8) show how the

constant G in (1.3c) depends on the position of the spaces ttvJTp(N) in the image

of the Levi form.
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