
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 104, Number 1, September 1988

MAZUR'S INTERSECTION PROPERTY AND A KREIN-MILMAN
TYPE THEOREM FOR ALMOST ALL CLOSED, CONVEX

AND BOUNDED SUBSETS OF A BANACH SPACE

PANDO GRIGOROV GEORGIEV

(Communicated by William J. Davis)

ABSTRACT. Let 2^ (resp. 2^*) be the set of all closed, convex and bounded

(resp. «/-compact and convex) subsets of a Banach space E (resp. of its dual

E*) furnished with the Hausdorff metric. It is shown that if there exists an

equivalent norm || • || in E with dual || • ||* such that (E, \\ ■ \\) has Mazur's

intersection property and (¿?*,|| • ||*) has iu*-Mazur's intersection property,

then

(1) there exists a dense G s subset % of 2^ such that for every Xe% the

strongly exposing functionals form a dense G¡ subset of E* ;

(2) there exists a dense G¡ subset 2q* of 2^* such that for every X* 6

2q* the it;"-strongly exposing functionals form a dense G¿ subset of E. In

particular every X 6 2^6 is the closed convex hull of its strongly exposed

points and every X* 6 2q* is the «/-closed convex hull of its «/-strongly

exposed points.

Let y be the set of all convex, closed, bounded and nonempty subsets of a real

Banach space (E, || • ||) and W* be the set of all convex, «/-compact and nonempty

subsets of (E*, || ■ ||*) (the dual space of E). The Hausdorff metric between two

subsets of E is defined as follows:

h(X, Y) = inf {s >0:XcY+eB,YcX + eB},

where X, Y c E and B is the closed unit ball in E: B = {x G E: \\x\\ < 1}.

If X and Y in the above definition belong to E* and B is replaced by B* (the

closed unit ball in E*), then the above formula defines the Hausdorff metric on

y*.

It is well known that (W, h) is a complete metric space (see [10, p. 417]).

The set S(X,I,a) = {x G X: (x,l) > suoz€X(z,I) — a) is said to be a slice,

depending on a subset X C E, on a continuous linear functional / 6 E* and on

a >0.

The point x G X C E (resp. x G X c E") is said to be a denting point (resp.

«/-denting point) if for every £ > 0 there exist / G E* (resp. I G E) and a > 0 such

that x G S(X, I, a) C B(x; e). If in this definition I does not depend on e, then the

point x is said to be a strongly exposed (resp. «/-strongly exposed) point and the

functional I is said to be a strongly exposing functional (resp. «/-strongly exposing

functional).
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There are many characterizations of the Banach spaces having the property that

every X G y (resp. every X* G 1^*) is the closed (resp. «/-closed) convex hull

of its strongly (resp. «/-strongly) exposed points. One can obtain an information

about this topic from the books: [2, 3, 4, 6]. In the present paper the question

is investigated, when this property is valid for almost all elements of y and ^*

(in the Baire sense). It is true for y when E* is separable—this follows from [5],

where it is proved also that every l G E*, I ^ 0 is a strongly exposing functional

for almost all elements of W'.

The space E (resp. E*) has Mazur's (resp. «/-Mazur's) intersection property if

every X G^ (resp. every X* G ^* ) can be represented as an intersection of the

closed balls which contain it [7 and 6, pp. 219, 230]. It was Mazur [11] who began

the investigation of normed linear spaces possessing the above property. Further

results on this topic were obtained by Phelps [12] and Sullivan [13]. Later Giles,

Gregory and Sims [7, 6] gave many characterizations of the Banach spaces having

Mazur's (resp. «/-Mazur's) intersection property. One of them states: a Banach

space E has Mazur's (resp. «/-Mazur's) intersection property if and only if the set

of «/-denting points for B* is dense in S* (resp. the set of denting points for B is

dense in S), where B, B*, S, S* are respectively the closed unit balls and spheres in

E and E*. Below we will see how this property is connected with a Krein-Milman

type theorem for almost all elements of W and 2^*.

It is easy to see that the topology of y (resp. 2^*) does not depend on the

choice of the concrete equivalent norm in E (resp. equivalent dual norm in E*).

Further we need the following well-known lemma (see [2, p. 44]), whose proof is

straightforward and is omitted.

LEMMA 1. For every slice S(X, Ir,, a) there exists £ > 0 such that S(X, I, a/2) C

S(X,l0,a) for every l G E*, \\l - lo\\* < e.

LEMMA 2. Let (M,d) be a metric space which contains at least two different

points, L be a dense subset of M and v be an integer, u > 1/diamM. Then for

every n = v, v..+ 1, • • •, there exists Ln C L such that d(x, y) > 1/n for every x,

y G Ln, x t¿ y and |Jn=i/ ^n ls a dense subset of M.

PROOF. Let Gn be a subset of L such that for every x, y G Gn x ^ y we have

d(x,y) > 1/n. Such Gn exist for every integer n > v, for example Gn = {21,22})

where Z\, 22 G L and (¿(21,22) > 1/v. Let Fn be the set of all such Gn. By the

Zorn lemma it follows that Fn has a maximal element Hn with respect to the usual

order "C". We will prove, that \J^=uHn is a dense subset of M. Assume the

contrary. Then there exists an open subset U of M for which UC\ (\J^=V Hn) = 0.

Take x0 G U n L and an integer n0 > v such that B(x0; l/n0) C U. Then Hno: =

Hno U {xn} will belong to F„0 and Hno ^ Hno, which is a contradiction with the

maximality of Hno.    D

Denote by N the set of all positive integer numbers.

LEMMA 3. Let X C E be bounded. Then the strongly exposing functionals for

X form a G s subset of E* (perhaps empty).

PROOF. We will show, that the set Yk = {l G E* : infQ>0 diam S(X, I, a) < 1/k}

is open for every k G N. Let k G N be fixed and I0 S V^. Then there exists a0 > 0

such that diamS'(A', Íq,oo) < 1/k- By Lemma 1 it follows, that there exists £ > 0
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for which the conditions / G E*, \\l - l0\\* < e imply S(X,l,a0/2) C S(X,l0,a0).

Hence infa>odiamS(X,l,a) < 1/k which means that Yk is open. Obviously

oo

j Yk = {l G E* : I is strongly exposing functional for X}

k=l

and the proof is completed.    O

It is well known (and routine to prove) that the mappings /:f 9Ä-» err-

and /* : y 3 K* —♦ ax-, where ok is the support function of K: ok(x*) =

suPx€k(x,x*) and ok-(x) = supx.€K,(x,x*) are isometric isomorphisms respec-

tively between (W,h) and (F*,p*), and between (^*,h) and (F,p) (Minkowski's

duality), where F* is the space of all sublinear, positively homogeneous, contin-

uous and w* -lower semicontinuous functionals on E* furnished with the uniform

metric p* and F is the space of all sublinear, positively-homogeneous, continuous

functionals on E furnished with the uniform metric p. It is easy to see that (F, p)

is a complete metric space, therefore ("V* ,h) is a complete metric space too.

Let P be the set of all equivalent norms in E, furnished with the metric p and

P* be the set of all equivalent dual norms in E* furnished with the metric p*. It is

a routine matter to prove that P is an open subset of the complete metric space of

all continuous seminorms on E under the distance p and that the map tt : p >—» p* is

a homeomorphism between P and P*, therefore P and P* are Baire spaces. Also,

the topology on P (resp. on P*) depends only on the topology in E (resp. in E*),

but does not depend on the choice of the concrete equivalent norm in E (resp.

concrete equivalent dual norm in E*).

Define the following sets:

R = {X G "y : 0 G int X, X is symmetric with respect to 0},

R* = {X* G ^* : 0 € int X*, X* is symmetric with respect to 0}.

It is easy to see that / and /* are isometric isomorphisms respectively between R

and P* and between R* and P, when R and R* are furnished with the Hausdorff

metric.

THEOREM 4. Let E be a Banach space and let the following condition hold:

(A) there exists an equivalent norm \\ ■ || in E (with dual \\ ■ ||*) such that the

set L of denting points for B is dense in S and the set L* of w* -denting points for

B* is dense in S*, where B,B*,S,S* are respectively the closed unit balls and the

unit spheres in E and E*: B = {x G E: \\x\\ < 1}, B* = {x* G E* : ||x*||* < 1},

S = {xGE: \\x\\ = 1}, S* = {x* G E* : ||x*||* = 1}.
Then

(a) there exist a dense Gs subset % C y and a dense Gs subset ?q* C ^*

such that for every X G % the set of strongly exposing functionals is a dense Gs

subset of E* and for every X* G %* the set of w* -strongly exposing functionals is

a dense Gs subset of E.

(b) every X G %o is the closed convex hull of its strongly exposed points and

every X* G %* is the w*-closed convex hull of its w* -strongly exposed points (%

and 'Zq* are from (a));

(c) there exist a dense Gs subset Fç, C F and a dense Gs subset F0* C F* such

that every f G Fo is Fréchet differentiable on a dense Gs subset of E and every

/* G Fq is Fréchet differentiable on a dense G s subset of E*;
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(d) there exists a dense Gs subset Pq C P such that: the set of dual norms

P0*:= {p* G P* : p G Po} is a dense Gs subset of P*, every p G Po is Fréchet

differentiable on a dense G s subset of E and every p* G Pq is Fréchet differentiable

on a dense Gs subset of E*.

PROOF, (a) By Lemma 2 there exist Ln C L* such that ||x* - «*||* > 1/n for

every x*, y* G Ln, x* ^ «*, n = 2,3,... and U^°=2 ^n is a dense subset of S*.

Let n G {2,3,...} be fixed. For every / G Ln there exist xn(l) G S, an(l) > 0

such that l G S (B*, xn(l), an(l)) C B(l; l/2n). By Lemma 1 there exists £n(l) > 0

such that

(1) S(B*,x, an(l)/2) c S(B*,xn(l), an(l)) C B(l; l/2n)

for every x G B(xn(l);£n(l)). Choose a denting point zn(l) G B(xn(l);£n(l)) n L.

Then there exist 2*(/) G S*, ßn(l) > 0 such that

zn(l) G S(B,z*n(l),2ßn(l)) C B(xn(l);£n(l)).

By Lemma 1 there exists 7„(Z) > 0 such that

(2) S(B,x*,ßn(l)) C S(B,z*n(l),2ßn(l)) c B(xn(l);£n(l))

for every x* G B(z*n(l);-yn(/)).

Let Sq be the set of those functionals from S*, which attain their supremum

over S. By the Bishop-Phelps theorem [1] Sq is dense in S*. Let x*(Z) G S* fl

B(z*n(l);ln(l)). Choose some yGS with (y,x*n(l)) = 1. By (2) y e £(xn (/);£„(/))

and by (1) we obtain

(3) x*n(l)GB(l;l/2n).

We will prove that

(4) {x G S : (x, x*n(h)) = 1} H S(B, x*n(l2), ßn(h)) = 0

for every lit l2 G Ln, h ^ l2.

Assume the contrary: for some ¡i, ¡2 £ ¿n, ¡i / h there exists

yGS(B,x*n(l2),ßn(h))

for which (y,x*n(li)) = 1. By (3) we have x*n(lx) G B(h;l/2n). From y G

S(B,x*n(l2),ßn(l2)) and by (2) it follows that y G B(xn(l2);£n(k))- By (1) we

have

x*n(h) G {x* 6 B~: (y,x*) = 1} C S(B*,y,an(l2)/2) C B(l2;l/2n),

and we obtain the contradiction

1/n < ||/i - /2||* < ||/i - <(ii)jr + \K(li) - Ml* < 1/")

and (4) is proved.

Denote Hnm = {l G Ln : ßn(l) > 1/^} and

^nmk = {XG'T:3a>0,31>0: diamS(X,x*n(l),a) < 1/k - <y, VZ G Hnm},
if Hnm # 0 and VnmA: = T if i/„m = 0-

We will prove that ^nmk is a dense and open subset of y for every n G A^\{1},

m, k G N.

(1) "Denseness". Let n € A^\{1}, m, k G N be fixed, i7nm 9¿ 0, X0 G T~,

£ > 0, u(l) G S(X0,x^(l), E/2m) for / G Ln. Let v(l) G B[u(1);e] be such that x*(Z)
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attains at v(l) its maximum over B[u(l);s] (such v(l) exists because of the choice

of x* (/)). By (4) for every l\, h G Hnm, li ± I2 we have

(v(h) - U(h))/E £ S(B, <(l2), ßn(h)),

(v(li)-u(li))/£ÍS(B,x*n(l2),l/m),

(v(li) - u(li),x*n(l2)) < e(1 - 1/m)

and we obtain

<«(/2), x*n(l2)) - (v(li), x*n(l2)) = (v(l2) - u(l2), x*n(h))

+ (u(l2),X*n(l2)) - (v(li)-U(li),X-n(l2)) - (u(li),X*n(l2))

>£+ sup (z,x*n(h)) - e/2m - e(l - 1/m) - (u(li),x*n(l2))
z€X0

>£/2m

Hence

(5) <«(/i), x*n(l2)) < («(/2), x;(/2)> - £/2m

for every ¿i, /2 € Hnm, ¿i ^ ¿2- Also, if x G Xq and l G Hnm, then we have

(v(l),x*n(l)) - (x,x*n(l)) > (v(l) - u(l),x*n(l)) + (u(l),x'n(l)) - sup (z,x*n(l))
z€X0

>£- E/(2m) > £/(2m),

whence

(6) (x,x*n(l)) <<«(/),x*n(l))-£/2m

for every x G X0 and l G Hnm.

Put Xi = co{{«(Z): l G Ln}U X0}, X2 = X¡ and for / G Hnm Y(l) =

{v(x*): x* G Hnm\{l}} UX0. For / € Hnm and y G coY(l) we have « = ¿£=1 r¿y¿,

where t¿ G [0,1], 1 < i < r, Y?i=i U — h Wi € Y(l) and by (5) and (6) we obtain

r

t=l

Hence

(7) (y,<(i)) <(v(i),<(0>-¿

for every y 6 cöT(Z).

Since for every l G Hnm we have X2 = co{cü Y (I) U «(/)}, by (7), we obtain

(8) (v(l),x*n(l))= sup(z,x*n(l)),    for every l G Hnm.
z€X2

Let 0 < a < e/8mfc(diamXo + 2e) and x € 5(X2,x* (/),a), x 7¿ «(/). Then we can

write x = Xv(l) + (1 - A)a for some A € [0,1) and a G cö F(Z) and by (7), (8) we

obtain

||x - «(Oil = (1 - X)\\v(l) - a|| = Ml) - x,x;(/))|||«(0 - a||/|<«(/) - a, x*n(l))\

< 2m(diamX0 + 2e)a/e < l/4fc.

Therefore diamS(X2,x'n(l), a) < l/2k < 1/k-l/Zk for every / G Hnm which shows

that X2 G ynmk- This is the main step of the construction.
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Let x G Xi. Then x = X)¿=i A¿x¿ f°r some x¿ e {«(1) : / G Hnm}UXo, A, € [0,1],

1 < i < s, Y2i=i At = 1 and since the function d(-, ATn) (here d and h below are

defined by || ■ ||) is convex (because Xq is convex), we have

(s \ s s

^A^XoJ < ^2xzd(xi,X0) < ^2\iE = £.
i=\ )        i=\ i=l

Since d(-, An) is continuous, d(x,Xo) < e for every x G X2, whence h(Xo,X2) <

e and the denseness is proved.

(2) "OPENNESS". Let Ao G "Vn-mk- Then there exist a0 > 0 and 7 > 0 such that

diam ¿'(An, x*(/), an) < 1/k — 7 for every / G Hnm. There exists 6 > 0 such that

diam S(X0, x* (/), an) +26 < 1/k — 7/2 for every / G Hnm and a := a0 — 26 > 0.

For every X G T^ for which h(X, Xo) < 6 we will show that

(9) S(X,x*n(l),a)cS(X0,x*n(l),a0) + 6B,

for every l G Hnm.

Let / G Hnm and x G S(X, x*(/),a). Since X C X0 + 6B and X0 C X + 6B,
there exist xqG X and « e 6B such that x = xn + u and the following inequalities

are fulfilled:

(xo,x;(0) = (x,x*n(l)) -(«,<(0) > sup(2,x;(0)-a-ó||x;(Z)||
«ex

= sup(2,x*!(0) + sup (2,x;(/)) -a-26
z€X zeSB

sup     (z,x*n(l)) -a0 > sup (2,x;(/)) -a0.
z€(X+6B) z€X0

Hence Xo G S(X0,x*(Z),a0) and (9) is proved. By (9) it follows that

diam S(X, x*n(l), a) < 1/k - 7/2

for every l G Hnm, therefore X G ^nmk and 2^mfc is open.

It is easy to see that f^: = HiTm fc=i ^nmk = {X G T^~ : every x* G M is strongly

exposing for X}, where M = U^°m=i{xn(0: ' e Hn,m}, and by the Baire category

theorem % is dense Gs in y. Since Ln = Um=i ^» and U^i ^n is dense in 5*,

by (3) it follows that M is dense in S*. Obviously the set \J{tM: t > 0} is dense

in E*. If x* is a strongly exposing functional for some X C E, then obviously tx*,

t > 0 is also a strongly exposing functional for X and by Lemma 3 the first part of

the assertion (a) is proved.

The proof of the second part of (a) is analogous, as the roles of E and E* are

exchanged and we need not the theorem of Bishop-Phelps. The peculiarity here is

that we define X'2= X[ , where X[ denote the «/-closed hull of X[ and we must

prove that h(X0,X2) < £ (X0 and X[ are defined in E* in an analogous way, as

the set Xq and Xi).

By the construction X[ C X'0 + eB* and since the set X'0 + eB* is «/-compact,

we have X'2 := Í['cl¿ + eB* , whence h(X2,X0) < s.

(b) This is an immediate consequence from (a) and from the separation theorem.

(c) The assertion follows from (a) and from the well known duality between

Fréchet differentiability and strong exposition:

x G X G y is a strongly exposed point for X by x* G E* if and only if ax is

Fréchet differentiable at x*,
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x* G X* G y is a u/-strongly exposed point of X* by x G E if and only if ax*

is Fréchet differentiable at x (see for instance [2, p. 159]).

(d) The set Ln from (a) can be defined (also by Zorn's lemma) in such a way,

that the following additional property is fulfilled: if l G Ln, then —l G Ln. Now we

replace y by R and work as in the proof of (a), choosing every «(•) from the set

{xn(-),zn(-),z*(-),xn(-),u(-),v(-)} and every A(-) from the set {a„(-),/?„(■), 7„(-)}

in such a way, that y(—l) = —y(l) and X(—l) = X(l) for every / € Ln. Having in

mind that / is an isometric isomorphism between R and P*, we apply the above

mentioned duality between Fréchet differentiability and strong exposition. Thus we

obtain a dense G s subset P* of P* such that every p* G P* is Fréchet differentiable

on a dense G s subset of E*. Analogously we obtain a dense G s subset Po of P

such that every p G Pq is Fréchet differentiable on a dense Gs subset of E. Put

Pq* = P* fi 7r(Po) and since it is a homeomorphism, the proof is completed.    D

In an analogy with the definitions of Asplund and weak* Asplund spaces (see

for instance [2]), we give the following definition.

DEFINITION 5. A Banach space E (resp. the dual E* of a Banach space E) will

be called an almost Asplund (resp. almost weak* Asplund) space, if there exists

a dense G s subset F0 of F (resp. Fq of F*) such that every f G F (resp. every

/* G F*) is Fréchet differentiable on a dense G s subset of E (resp. of E* ).

Thus, in this terminology, Theorem 4 states that if for a Banach space E con-

dition (A) of Theorem 4 holds, then E is an almost Asplund space and E* is an

almost weak* Asplund space.

From the condition (d) of Theorem 4 and the results of Godefroy [8] we have

the following

COROLLARY 6. If a Banach space satisfies the assumptions of Theorem 4, then

there exists a dense G s subset Po of P such that for every norm p G Po, when E is

furnished with p, one has

(1) there exists a unique projection of norm 1 from E*** to E*, and thus E is

unique isometric predual of E*,

(2) E is not isometric to a dual space (if E is not reflexive).

A norm || ■ || of a Banach space E is said to be locally uniformly rotund (LUR) if

for every sequence {x„}n>o C E with ||x„|| < 1, n = 0,1,2,... ,lim ||xn + xn|| = 2

it follows that xn —» Xo-

It is not difficult to see that if the norm || • || of E is LUR, then every point of

its unit sphere is strongly exposed for its unit ball.

A result of G. Godefroy, S. Troyanski, J. Whitfield and V. Zizler [9] asserts that

if E* is weakly compactly generated Banach space (WCG, that is there exists in E*

a weak compact set whose linear hull is dense in E* ), then there exists an equivalent

LUR norm in E whose dual norm is also LUR. Thus by Theorem 4(c) we obtain

the following.

PROPOSITION 7.   If E* is WCG, then E* is an almost weak* Asplund space.

For a comparison it is worth to mention the following well-known facts: if E*

is WCG, then E is an Asplund space; also if E is reflexive, then E* is a weak*

Asplund space.
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As a corollary from Proposition 7 we obtain that the odd conjugate of the James

Tree space JT, which are WCG (see for instance [4, p. 214]) are almost weak*

Asplund spaces.

The particular case of Proposition 7, when E* is separable, follows from [5].

EXAMPLE 8. There exist almost weak* Asplund spaces which are not weak*

Asplund spaces: en has not the Radon-Nikodym property, therefore li = cj*. is not

a weak* Asplund space. But Zi is separable and by [5] (also by Proposition 7) ¿i is

an almost weak* Asplund space. There are almost Asplund spaces which are not

Asplund: for example every separable Banach space which dual is not separable

(for instance /i) is not an Asplund space, but it is an almost Asplund space (this

follows from the results in [5] and from the duality between Fréchet differentiability

and strong exposition).

QUESTION 9 What are the necessary and sufficient conditions for E (E*) to be

an almost Asplund (almost weak* Asplund) space?

ACKNOWLEDGEMENTS The author would like to thank Professor P. S. Kenderov

for his helpful suggestions and the encouragement while this work was in progress.

The author is very grateful to the referee for observing the validity of Corollary 6.

References

1. E. Bishop and R. R. Phelps, The support functionals of a convex set, Convexity, Proc. Sympos.

Pure Math., vol. 7, Amer. Math. Soc, Providence, R. I., 1963, pp. 27-35.

2. R. D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodym property, Lecture Notes

in Math., vol. 993, Amer. Math. Soc, Providence, R. I., 1983.

3. J. Diestel,   Geometry of Banach spaces—selected topics, Lecture Notes in Math., vol. 485,

Springer-Verlag, Berlin and New York, 1975.

4. J. Diestel and J. Uhl, Vector measures, Math. Surveys, vol. 15, Amer. Math. Soc, Providence,

R. I., 1977.
5. P. Gr. Georgiev, Almost all closed, convex and bounded subsets of a Banach space are dentable,

Proc. 14th Spring Conf. Union Bulg. Math., 1985, 355-361.

6. J. R. Giles,  Convex analysis with application in differentiation of convex functions, Pitman

Advanced Publ. Prog., 1982.

7. J. R. Giles, P. A. Gregory and B. Sims, Characterization of normed linear spaces with Mazur's

intersection property, Bull. Austral. Math. Soc. 18 (1978), 105-123.

8. G. Godefroy, Points de Namióka, espaces normants, applications a la théorie isométrique de la

dualité, Israel J. Math. 38 (1981), 209-220.
9. G. Godefroy, S. Troyanski, J. Whitfield and V. Zizler, Locally uniformly rotund renorming and

injections into c0(T), Cañad. Math. Bull. 27 (1984), 494-500.
10. K. Kuratowski, Topology I, "Mir", Moscow, 1966. (Russian)

11. S. Mazur, Über schwach Konvengenz in den Räumen (Lp), Studia Math. 4 (1933), 128-133.

12. R. R. Phelps, A representation of bounded convex sets, Proc. Amer. Math. Soc. 11 (1960),

976-983.

13. F. Sullivan, Dentability, smoothability and stronger properties in Banach spaces, Indiana Math.

J. 26 (1977), 545-553.

Bulgarian Academy of Sciences, Institute of Mathematics, 1090 Sofia, P. O.
Box 373, Bulgaria


