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ABSTRACT. For a > 0, let B\ (a) be the class of normalised analytic functions

/ defined in the open unit disc D such that Re(f(z)/z)a~1f'(z) > 0 for z € D.

Sharp upper and lower bounds are obtained for \zf'(z)/f(z)\ when / 6 fîi(a).

1. Introduction. For a > 0, denote by 5(a) the class of analytic Bazilevic

functions defined in the unit disc D, with /(0) = 0 and /'(0) = 1 (e.g. [2, 8]) and

by Bi (a) the subclass of B(a) for which

(1) Re/VX/MAr-'X)
for z G D [7].    Clearly Si(l) = R, the class of analytic functions satisfying

Re/'(z) > 0 in D first studied by Alexander [1].

In [9], it was shown that for / G R and z G D,

zf'(z)

m
-K

<
(l-H)iog(i-N)'

where K is an absolute constant.   Recently, London [5] obtained the sharp up-

per bound and Gray and Ruscheweyh [4], the sharp upper and lower bounds for

!«/'(*)//(*) I when/G Ä.
In this paper, we give sharp upper and lower bounds for the wider class Bi(a).

This sharpens the upper bound estimate given by El-Ashwah and Thomas [3].

2. Results. Following Gray and Ruscheweyh (loc. cit), we begin by defining a

slightly wider class of functions.

DEFINITION. For a > 0, denote by B0{a) the class of function analytic in D

with /(0) = 0, /'(0) = 1 and satisfying the condition

Reel't'f'(z)(f(z)/z)a-1>0

for z € D and for some <j> = </>(/) G R.

THEOREM.   For f e B0(a) and \z\ < r < 1,

a{\ +r)J0 1+tr     " | f(z)    " a(l - r) J0 1 - tr

t-hand inequalities are sharp in BThe left-hand and right-hand inequalities are sharp in Bo{a) for the function

l/a

at z = —r and z = r respectively.

We use the method of Gray and Ruscheweyh (loc. cit) and require the following

lemma.
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LEMMA. LetF{z) = l-za/{aftçc,-1/{l-s)dç) andG(z) = {l-F{z))/{\-z).

Then F and G have nonnegative Taylor coefficients about z = 0, and in particular

for \z\ < r < 1,

(2) \F(z)\ < F(r) < lim F(t) = 1,

(3) \F'(z)\<F'(r)

and

(4) \G(z)\ < G(r).

Proof. Let

H{z) = F(z) -i = -z°/(aj*Ç^ de) .

Then clearly

(5) (l-z)(zH'{z)-aH{z)) = aH2(z).

With H(z) = ££locfc2fc> (5) implies that

k

(fc-Q)cfc = (fc- 1 -a)cfc_i +a^2cjCk-j,

1=0

where c_ i =0. Thus

(6) c0 = -1,        c, =——-,        c2 =
a + 1 *      (2 +a) (a + 1)2

and for fc > 3,

(7) {k + a)ck= (k+ a  ~   a~   )ck-1+bk,
V a + 1      J

where
fc-2

63 = 0    and    bk — a 2_\ cjck-j    for fc > 4.

¿=2

Since 3 + (a2 — 2a — l)/(a + 1) > 0 a simple induction argument using (6) and (7)

shows that ck > 0 for fc > 1.  Thus the coefficients of F are nonnegative and (2)

and (3) follow. Finally, with G(z) — J2k>=o<tkZk, we have

fc fc

dk = 1 - 23 ci' = l - lim 23 cjíJ > 1 - lim F(í) = 0
j=i "* j=i ~*

and (4) follows.

Proof of the Theorem. From (l), it follows that

zf'(z) h{z) h{z)
(8)

f(z)       o2-a/0Jr'Mí)<íí      a£ta-lh{tz)dt

where Reel*/i(z) > 0 for z G D. It follows from the Duality Principle [6, Theorem

1.1, Corollary 1.1 and Theorem 1.6] that any value assumed by the right-hand side

of (8) for some z G D is also assumed for this z when h is a function of the form
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(1 + xz)/(l + yz) where \x\, |y| = 1. Clearly in obtaining upper and lower bounds

for \zf'(z)/f(z)\, we may take

(9) fc(zj s=_i±££    for |a;| = l.
l — z

We first obtain the lower bound in the Theorem. Using (8) and (9), we write

/(*)   = £L  l~z   ['ta-i1 + xSdc
zf'{z)      za 1 + xz /o 1 - ?

xtz

y0     i + xz  i - tz
dt.

Now for 0 < t < 1 and \z\ < 1,

l + t\z\

1 + 1*
1+tz

1 + z

l-t\z\

l-\z\

Thus

and so

1 + xtz  l-z\  „ l-t\z\  l + \z\

1 + xz l — tz\"  1 — \z\  l + t\z

m
-    1-rJo 1 + tr

dt
I */'(*) I

which is the required lower bound.

For the upper bound, we use (9) together with F as defined in the Lemma to

write

aj*ça-1h(ç)dç = aj%a-1 C-x + j^j dç

Hence (8) and (9) give

l + xF(zl
l-F(z)'

*/'(*) -r(~\   1 + xz
f(z)   -U(Z,l + xF(zy

where G(z) = (1 - F(z))/(1 - z). Since (1 + az)/(l + bz) maps the closed unit disc

onto the circle centre (1 - ab)/(l - \b\2), radius \a — b\/(l — \b\2) provided |6| < 1,

we deduce that

*/'(*)

/(*)
< \G(z)\

\G(z)\

l-|F(z)|2

\G(z)\
1 - |F(*)|2

1 + r

\z - F(z)\ + \1 - F{z)z\

1 - |F(*)|2

F(z)
+ 1 - r2 + r2 0-^)1)

< r(l + r) !     F(z) + (l-r2)

(l|F'(2)| + (l-r)|G(z)|)
1 - |F(z)|2

where we have used F'(z) = aG(z)(l - F{z)/z).
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It now follows from the Lemma that the last expression is maximal for z

and so

zf'(z)

f(z)

(l + r)G(r) _ 1 + r 1 - F{r)

-    1 + F{r)        1 - r 1 + F{r)

■»'+r'.(-*-"jf'",^s'")"
which completes the proof.
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